scholarly journals 9: Pancreatic and islet vasculature are significantly diminished in CF donors – a potential contributor to insulin deficiency in CF

2021 ◽  
Vol 20 ◽  
pp. S5
Author(s):  
J. Castillo ◽  
A. Aplin ◽  
R. Akter ◽  
R. Hull-Meichle
1957 ◽  
Vol 25 (1) ◽  
pp. 91-100 ◽  
Author(s):  
F. Gerritzen ◽  
E. L. Noach ◽  
M. van Wijhe ◽  
L. E. M. Valk
Keyword(s):  

2021 ◽  
Vol 9 (5) ◽  
pp. 1062
Author(s):  
Chunye Zhang ◽  
Craig L. Franklin ◽  
Aaron C. Ericsson

The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1245
Author(s):  
Shu Zhang ◽  
Qi Ge ◽  
Liang Chen ◽  
Keping Chen

Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.


Endocrinology ◽  
1994 ◽  
Vol 135 (2) ◽  
pp. 610-616 ◽  
Author(s):  
M Gadot ◽  
G Leibowitz ◽  
E Shafrir ◽  
E Cerasi ◽  
D J Gross ◽  
...  

1998 ◽  
Vol 26 ◽  
pp. 156-160 ◽  
Author(s):  
Richard Hodgkins ◽  
Martyn Tranter

The chemical composition of snow and meltwater in the 13 km2 catchment of Scott Turnerbreen, Svalbard, was investigated during the spring and summer of 1993. This paper assesses the provenance of solute in the snowpack and its impact on runoff chemistry. Dry snow contains 420μeql-1 of solute, is slightly acidic (pH 5.4) and is dominated by Na+ and Cl-. Wet snow is more dilute (total concentration 340μeql-1), and less acidic (pH 5.9). This is consistent with the elution of ions from the snowpack by meltwater. Snowpack solute can be partitioned into the following fractions: sea-salt aerosol, acid aerosol and crustal. About 98% of snowpack solute is sea salt, yielding 22000 kg km-2a-1. The behaviour of snowpack-derived Cl- in runoff is distinctive, peaking at over 800 μeql-1 early in the melt season as runoff picks up, before declining quasi-exponentially. This represents the discharge of snowmelt concentrated by elution within the snowpack which subsequently becomes relatively dilute. A solute yield of 140 kg km-2 a-1 can be attributed to anthropogenically generated acid aerosols, representing long-range atmospheric transport of pollutants, a potential contributor to Arctic runoff acidification.


2021 ◽  
Vol 13 (4) ◽  
pp. 1843
Author(s):  
Cristina Pérez-Pérez ◽  
Diana Benito-Osorio ◽  
Susana María García-Moreno ◽  
Andrés Martínez-Fernández

The sharing economy has been presented as a potential contributor to the UN Sustainable Development Goals (SDGs) due to the change it brings to consumption patterns. Although this potential has been identified in different papers, there is not, as far as we know, a single article that explains in detail all the possible platforms through which the sharing economy can contribute to the achievement of the SDGs. This paper addresses this topic by reviewing the existing literature involving the sharing economy and the SDGs, and by analyzing the main characteristics attributed to this business model, and how each one of them may in theory contribute to the SDGs. Our paper advances the field by establishing hitherto undiscovered relationships between the two concepts, while laying the foundations for corroborating our theoretical findings in future analytical studies.


2001 ◽  
Vol 1 ◽  
pp. 860-865 ◽  
Author(s):  
John J. Meisinger ◽  
Alan M. Lefcourt ◽  
Jo Ann S. Van Kessel ◽  
Victor Wilkerson

Animal agriculture is a significant source of atmospheric ammonia. Ammonia (NH3) volatilization represents a loss of plant available N to the farmer and a potential contributor to eutrophication in low-nitrogen input ecosystems. This research evaluated on-farm slurry treatments of alum or zeolite and compared three diets for lactating dairy cows in their effectiveness to reduce NH3 emissions. NH3 emissions were compared using a group of mobile wind tunnels. The addition of 2.5% alum or 6.25% zeolite to barn-stored dairy slurry reduced NH3 volatilization by 60% and 55%, respectively, compared to untreated slurry. The alum conserved NH3 by acidifying the slurry to below pH 5, while the zeolite conserved ammonia by lowering the solution-phase nitrogen through cation exchange. The use of alum or zeolite also reduced soluble phosphorus in the slurry. NH3 loss from fresh manure collected from lactating dairy cows was not affected by three diets containing the same level of crude protein but differing in forage source (orchardgrass silage vs. alfalfa silage) or neutral detergent fiber (NDF) content (30% vs. 35% NDF). NH3 losses from the freshly excreted manures occurred very rapidly and included the urea component plus some unidentified labile organic nitrogen sources. NH3 conservation strategies for fresh manures will have to be active within the first few hours after excretion in order to be most effective. The use of alum or zeolites as an on-farm amendment to dairy slurry offers the potential for significantly reducing NH3 emissions.


Sign in / Sign up

Export Citation Format

Share Document