Transport Property and Photoinduced Relaxation Effect in Sm0.5Ca0.5MnO3 Film

2008 ◽  
Vol 37 (10) ◽  
pp. 1701-1704 ◽  
Author(s):  
Kexin Jin ◽  
Changle Chen ◽  
Shenggui Zhao
CrystEngComm ◽  
2021 ◽  
Author(s):  
Sanjay Kumar ◽  
Soumen Singha ◽  
Rajkumar Jana ◽  
RITUPARNA MONDAL ◽  
Partha Pratim Bag ◽  
...  

Herein, we report the crystal structure, supramolecular structure, electronic transport property and optoelectronic behaviour of a co-crystal made of tetrabromoterephthalic acid (TBTA) and quinoxaline (QUIN) (1:1). The sample has been...


2021 ◽  
pp. 149463
Author(s):  
Bing Lv Calculation ◽  
Xiaona Hu ◽  
Ning Wang ◽  
Jia Song ◽  
Xuefei Liu ◽  
...  

2010 ◽  
Vol 484 (4-6) ◽  
pp. 96-99 ◽  
Author(s):  
Yudong Gu ◽  
Jun Zhou ◽  
Wenjie Mai ◽  
Ying Dai ◽  
Gang Bao ◽  
...  
Keyword(s):  

2008 ◽  
Vol 137 ◽  
pp. 21-28 ◽  
Author(s):  
Andre Rivière ◽  
Michel Gerland ◽  
Veronique Pelosin

Internal friction peaks observed in single or polycrystals are clearly due to a dislocation relaxation mechanism. Because a sample observed by transmission electron microscopy (TEM) often exhibits in the same time various dislocation microstructures (isolated dislocations, dislocation walls, etc.) it is very difficult to connect the observed relaxation peak with a particular dislocation microstructure. Using isothermal mechanical spectroscopy (IMS), it is easier to compare, for instance, the evolution of a relaxation peak with measurement temperature to the microstructural evolution observed by in-situ TEM at the same temperatures. IMS was used to study a relaxation peak in a 5N aluminium single crystal firstly 1% cold worked and then annealed at various temperatures. TEM experiments performed in the same material at various temperatures equal to the temperatures used for the damping experiments made possible to link this internal friction peak with a relaxation effect occurring inside dislocation walls. In two other experiments in a 4N aluminium polycrystal and in a metal matrix composite with SiC whiskers, it is shown that the observed relaxation peaks are connected to the motion of dislocations inside polygonization boundaries in the first case and in dislocation pile-ups around each whisker in the second one. Theoretical models proposed to explain such relaxation peaks due to a dislocation motion inside a dislocation wall or network are discussed.


Sign in / Sign up

Export Citation Format

Share Document