scholarly journals Experimental Study on Isothermal Forging Technology for a Complex-Shaped Titanium Alloy Wing

2017 ◽  
Vol 46 (11) ◽  
pp. 3182-3187 ◽  
Author(s):  
Jiang Hongyan ◽  
Cheng Feng
2007 ◽  
Vol 26-28 ◽  
pp. 367-371
Author(s):  
Hong Zhen Guo ◽  
Zhang Long Zhao ◽  
Bin Wang ◽  
Ze Kun Yao ◽  
Ying Ying Liu

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of TA15 titanium alloy was researched. The results of the tests indicate that, in the range of temperature of 850 °C~980 °C and deformation degree of 20%~60%, with the increase of temperature or deformation, as the reinforcement of deformation recrystallization, the primary α-phase tends to the spherical shape and secondary α-phase transforms from the acicular shape to fine and spherical shape with disperse distribution, which enhance the tensile properties at room and high temperature. With the increment of forging times, the spheroidization of primary α-phase aggrandizes and secondary α-phase transforms from spherical and acicular shape to wide strip shape, which decrease the tensile properties at room and high temperature. The preferable isothermal forging process parameters are temperature of 980 °C, deformation degree of 60%, and few forging times.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2013 ◽  
Vol 575-576 ◽  
pp. 523-526
Author(s):  
Feng Cheng ◽  
Hong Yan Jiang

A closed isothermal forging process was adopted for precision forming of the Ti-6Al-4V wing with a variable cross-section asymmetric structure. Firstly, simulations under different process parameters, such as the deformation temperature, punchs velocity et al. were analyzed with DEFORM-3D software to eliminate the defects in the isothermal forming process. The simulation results demonstrated that the loads during isothermal deformation were determined not just by the forging temperature but the punchs velocity, the less velocity of punch, the better filling ability, and yet temperatures from 900 to 950°C had less influence on filling ability. To verify the validity of simulation results, the isothermal forging experiment was carried out on an isothermal forging hydraulic press (THP10-630). It is demonstrated that the optimized billet dimension can ensure the quality of forging part and the titanium alloy wing component with complex shape was successfully forged with the punch speed of 0.1mm/s at 950°C and its mechanical performances were improved.


2010 ◽  
Vol 97-101 ◽  
pp. 153-157
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Jian Hua Zhang ◽  
Ze Kun Yao

The microstructures and room temperature and 600°C tensile properties of Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb -0.4Si-1.5Ta alloy after isothermal forging have been studied. The forging temperature range was from 850°C to 1075°C, and the constant strain rate of 8×10-3/S-1 was adopted. With the increase of forging temperature, the volume fraction of primary α phase decreased and the lamellar α phase became thicker when the temperatures were in range of 850°C -1040°C; The grain size became uneven and the α phase had different forms when the forging temperature was 1040°C and 1075°C respectively; The tensile strength was not sensitive to the temperature and the most difference was within 20MPa. Tensile strength and yield strength attained to the maximum when temperature was 1020°C; the ductility decreased with the increase of forging temperature, and this trend became more obvious if forging temperature was above the β-transus temperature.


Applied laser ◽  
2013 ◽  
Vol 33 (3) ◽  
pp. 219-224
Author(s):  
王俊 Wang Jun ◽  
李崇桂 Li Chonggui ◽  
王一鸣 Wang Yiming ◽  
高扬 Gao Yang ◽  
徐振 Xu Zhen ◽  
...  

Author(s):  
Dong Liu ◽  
Fang Wang ◽  
Jian min Wang ◽  
Yuan Xue ◽  
Jing Xue

Sign in / Sign up

Export Citation Format

Share Document