scholarly journals 0111 : Role of endoplasmic reticulum stress in the deleterious cardiovascular consequences of chronic intermittent hypoxia. Beneficial effects of high-intensity interval training

2015 ◽  
Vol 7 (2) ◽  
pp. 206
Author(s):  
Guillaume Bourdier ◽  
Claire Arnaud ◽  
Elise Belaidi-Corsat ◽  
Patrice Flore ◽  
Hervé Sanchez
Author(s):  
Christopher R. J. Fennell ◽  
James G. Hopker

Abstract Purpose The current study sought to investigate the role of recovery intensity on the physiological and perceptual responses during cycling-based aerobic high-intensity interval training. Methods Fourteen well-trained cyclists ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak : 62 ± 9 mL kg−1 min−1) completed seven laboratory visits. At visit 1, the participants’ peak oxygen consumption ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak ) and lactate thresholds were determined. At visits 2–7, participants completed either a 6 × 4 min or 3 × 8 min high-intensity interval training (HIIT) protocol with one of three recovery intensity prescriptions: passive (PA) recovery, active recovery at 80% of lactate threshold (80A) or active recovery at 110% of lactate threshold (110A). Results The time spent at > 80%, > 90% and > 95% of maximal minute power during the work intervals was significantly increased with PA recovery, when compared to both 80A and 110A, during both HIIT protocols (all P ≤ 0.001). However, recovery intensity had no effect on the time spent at > 90% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.11) or > 95% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.50) during the work intervals of both HIIT protocols. Session RPE was significantly higher following the 110A recovery, when compared to the PA and 80A recovery during both HIIT protocols (P < 0.001). Conclusion Passive recovery facilitates a higher work interval PO and similar internal stress for a lower sRPE when compared to active recovery and therefore may be the efficacious recovery intensity prescription.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2254 ◽  
Author(s):  
Jerome L. Fleg

Although moderate-intensity continuous training (MICT) has been the traditional model for aerobic exercise training for over four decades, a growing body of literature has demonstrated equal if not greater improvement in aerobic capacity and similar beneficial effects on body composition, glucose metabolism, blood pressure, and quality of life from high-intensity interval training (HIIT). An advantage of HIIT over MICT is the shorter time required to perform the same amount of energy expenditure. The current brief review summarizes the effects of HIIT on peak aerobic capacity and cardiovascular risk factors in healthy adults and those with various cardiovascular diseases, including coronary artery disease, chronic heart failure, and post heart transplantation.


2016 ◽  
Vol 11 (1) ◽  
pp. 64-76 ◽  
Author(s):  
Elizabeth F. Nagle ◽  
Mary E. Sanders ◽  
Barry A. Franklin

High-intensity interval training (HIIT) has emerged as an attractive alternative to traditional continuous exercise training (CT) programs for clinical and healthy populations who find that they can achieve equal or greater fitness benefits in less time. Land-based HIIT may not be an appropriate choice for some participants. Few studies have explored the acute responses and chronic adaptations of HIIT in an aquatic environment, and no study has compared the cardiometabolic responses of an aquatic-based program to a land-based HIIT program. Shallow-water aquatic exercise (AE) programs utilizing HIIT have elicited comparable and, in some cases, greater physiological responses compared with constant-intensity or continuous AE regimens. Factors that may explain why HIIT routines evoke greater cardiometabolic responses than CT protocols may be based on the types of exercises and how they are cued to effectively manipulate hydrodynamic properties for greater intensities. Favorable aquatic HIIT protocols such as the S.W.E.A.T. system may serve as a beneficial alternative to land-based HIIT programs for clinical, and athletic populations, potentially reducing the likelihood of associated musculoskeletal and orthopedic complications. Hence, the purpose of this review is to examine the role of AE as an alternative safe and effective HIIT modality.


2021 ◽  
Vol 22 (6) ◽  
pp. 3003
Author(s):  
Nicolas Hugues ◽  
Christophe Pellegrino ◽  
Claudio Rivera ◽  
Eric Berton ◽  
Caroline Pin-Barre ◽  
...  

Stroke-induced cognitive impairments affect the long-term quality of life. High-intensity interval training (HIIT) is now considered a promising strategy to enhance cognitive functions. This review is designed to examine the role of HIIT in promoting neuroplasticity processes and/or cognitive functions after stroke. The various methodological limitations related to the clinical relevance of studies on the exercise recommendations in individuals with stroke are first discussed. Then, the relevance of HIIT in improving neurotrophic factors expression, neurogenesis and synaptic plasticity is debated in both stroke and healthy individuals (humans and rodents). Moreover, HIIT may have a preventive role on stroke severity, as found in rodents. The potential role of HIIT in stroke rehabilitation is reinforced by findings showing its powerful neurogenic effect that might potentiate cognitive benefits induced by cognitive tasks. In addition, the clinical role of neuroplasticity observed in each hemisphere needs to be clarified by coupling more frequently to cellular/molecular measurements and behavioral testing.


Sign in / Sign up

Export Citation Format

Share Document