scholarly journals Expression and function of Annexin II in lung cancer tissue

2013 ◽  
Vol 6 (2) ◽  
pp. 150-152 ◽  
Author(s):  
Jun-Wei Cui ◽  
Yong-Liang Wang
Author(s):  
Xiaoting Zhao ◽  
Mei Jiang ◽  
Yu Teng ◽  
Jie Li ◽  
Zhefeng Li ◽  
...  

Cyclin Y (CCNY) is a novel cyclin and highly conserved in metazoan species. Previous studies from our and other laboratory indicate that CCNY play a crucial role in tumor progression. There are two CCNY isoform which has different subcellular distributions, with cytoplasmic isoform (CCNYc) and membrane distribution isoform (CCNYm). However, the expression and function of CCNY isoforms is still unclear. We firstly found CCNYc was expressed in natural lung cancer tissue and cells through the subcellular distribution. Co-IP and immunofluorescence showed that both CCNYm and CCNYc could interact with PFTK1. Further studies illustrated that CCNYc but not CCNYm enhanced cell migration and invasion activity both in vivo and vitro. The function of CCNYc could be inhibited by suppression of PFTK1 expression. In addition, our data indicated that tropomyosin 4 (TPM4), a kind of actin-binding proteins, was down-regulated by suppression of CCNY. F-actin assembly could be controlled by CCNYc as well as PFTK1 and TPM4. As a result, CCNY was mainly expressed in lung cancer. CCNYc could promote cell motility and invasion. It indicated that CCNYc/PFTK1 complex could promote cell metastasis by regulating the formation of F-actin via TPM4.


2018 ◽  
Vol 13 (10) ◽  
pp. S767-S768
Author(s):  
T. Boyle ◽  
G. Quinn ◽  
M. Schabath ◽  
T. Munoz-Antonia ◽  
L. Duarte ◽  
...  

2012 ◽  
Vol 129 (4) ◽  
pp. e92-e96 ◽  
Author(s):  
Ewa Sierko ◽  
Marek Z. Wojtukiewicz ◽  
Lech Zimnoch ◽  
Krystyna Ostrowska-Cichocka ◽  
Piotr Tokajuk ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Junjie Yu ◽  
Ping Jiang ◽  
Ke Zhao ◽  
Zhiguo Chen ◽  
Tao Zuo ◽  
...  

Objective: To investigate DACH1 protein expression in lung cancer tissue and matched paracancerous tissue, and explore its effect on proliferation, invasion, and apoptosis in human lung adenocarcinoma cells (HLACs). Methods: Tumor tissue and matched paracancerous tissue was collected from 46 patients with pathologically diagnosed lung cancer. RT-PCR was perfomed to detect DACH1 mRNA expression and immunohistochemistry to measured DACH1 protein expression. To determine the effect of DACH1 on lung cancer behavior, small interfering RNA (siRNA) was used to silence DACH1 expression in A549 cells. The impact on the proliferation of tumor cells was then observed by MTT assay, changes in the invasion of tumor cells were identified using transwell chamber assay, and the effects on apoptosis in the cell line were detected using flow cytometry. Results: The expression of DACH1 mRNA and DACH1 protein were significantly decreased in lung cancer tissue versus matched paracancerous control tissue. Silencing of DACH1 expression in A549 cells significantly enhanced cell proliferation, significantly increased cell invasion and significantly reduced spontaneous apoptosis. Conclusion: DACH1 is downregulated in lung adenocarcinoma tissue. In vitro assessment shows that DACH1 functions as a tumor suppressor, suggesting its potential use as new target for lung cancer treatment.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 803 ◽  
Author(s):  
Ming-Szu Hung ◽  
Jr-Hau Lung ◽  
Yu-Ching Lin ◽  
Yu-Hung Fang ◽  
Shu-Yi Huang ◽  
...  

Mutations in the epidermal growth factor receptor (EGFR) are associated with various solid tumors. This study aimed to compare two methods for the detection of EGFR mutations in circulating tumor DNA (ctDNA) from lung adenocarcinoma (LUAD) patients and to evaluate the clinical significance of EGFR mutations in ctDNA. In this prospective cohort study, the EGFR mutation status of 77 patients with stage IIIB or IV LUAD was first determined using lung cancer tissue. The amplification refractory mutation system (ARMS) and single allele base extension reaction combined with mass spectroscopy (SABER/MassARRAY) methods were also used to detect EGFR mutations in plasma ctDNA from these patients and then compared using the EGFR mutation status in lung cancer tissue as a standard. Furthermore, the relationship between the presence of EGFR mutations in ctDNA after receiving first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI) therapy and survival was evaluated. The overall sensitivity and specificity for the detection of EGFR mutations in plasma ctDNA by ARMS and SABER/MassARRAY were 49.1% vs. 56% and 90% vs. 95%, respectively. The agreement level between these methods was very high, with a kappa-value of 0.88 (95% CI 0.77–0.99). Moreover, 43 of the patients who carried EGFR mutations also received first-line EGFR-TKI therapy. Notably, patients with EGFR mutations in plasma ctDNA had significantly shorter progression-free survival (9.0 months, 95% CI 7.0–11.8, vs. 15.0 months, 95% CI 11.7–28.2; p = 0.02) and overall survival (30.6 months, 95% CI 12.4–37.2, vs. 55.6 months, 95% CI 25.8–61.8; p = 0.03) compared to those without detectable EGFR mutations. The detection of EGFR mutations in plasma ctDNA is a promising, minimally invasive, and reliable alternative to tumor biopsy, and the presence of EGFR mutations in plasma ctDNA after first-line EGFR-TKI therapy is associated with poor prognosis.


1991 ◽  
Vol 203 (2-3) ◽  
pp. 225-233 ◽  
Author(s):  
Masafumi Kawamura ◽  
Ryoichi Kato ◽  
Koji Kikuchi ◽  
Koichi Kobayashi ◽  
Tsuneo Ishihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document