scholarly journals EFFECTS OF CLIMATE CHANGE ON RICE YIELD AND RICE MARKET IN VIETNAM

2016 ◽  
Vol 48 (4) ◽  
pp. 366-382 ◽  
Author(s):  
TRANG T. H. LE

AbstractWe evaluate the effects of climate change on Vietnam's rice market. Results suggest that under a low-emission scenario and without interventions, rice production would drop by as much as 18% by 2030 relative to the 1980–1999 average. Farm and wholesale prices would increase by 1.86%, causing domestic demand to fall by 0.38%. The export sector would experience a rise of 6.94% in export free-on-board prices and a drop of 55.36% in export quantities. Farmers would experience a sales loss of 16.02%, whereas wholesalers would see a sales gain of 1.48%. For exporters, their sales loss would amount to 48.42%.

2021 ◽  
Author(s):  
◽  
Muhamad Bahri

<p>Climate change, manifested as temperature rise and rainfall change, will pose significant challenges to rice farmers, leading to a possible rice shortage under a changing climate. This research aims to understand the impacts of climate variability and change on rice production through the rest of this century using Representative Concentration Pathway (RCP) scenarios, and combination of statistical and system dynamic modelling. The area of study is West Nusa Tenggara, Indonesia. Wetland and dryland farming types are assessed separately because they have different rice varieties and different agricultural practices.  Overall, the research seeks to answer the question: How will climate change and climate variability affect rice production? Additional questions investigated are (1) What are the most significant supply uncertainties associated with a changing climate? and (2) What are possible solutions for reducing the impacts of climate change on rice production?. To answer these research questions, this study deals with three main research areas. First, based on observed data (1976-2011), this study developed regression-based statistical models in understanding the impacts of climate change on rice yield in West Nusa Tenggara. Statistical models find that the negative impacts of increased minimum temperature on rice yield are statistically significant.   By contrast, the effects of maximum temperature on rice yield are not statistically significant. A key reason for this is that the highest maximum temperature (32⁰C) in the observed period (1976-2011) was lower than 35⁰C, a rice threshold for maximum temperature. By 2090 (2077-2100), rice yield in wetland and dryland is projected to decrease by about 3% (RCP2.6 scenario), 4% (RCP4.5 scenario), 5% (RCP6.0 scenario) and 14% (RCP8.5 scenario).  Second, a system dynamics model was developed to assess the impacts of climate change on three issues including rice yield, harvested areas and rice production by 2090 (2077-2100). After embedding statistical models and estimating the impacts of maximum temperature on rice yield based on existing studies, the impacts of climate change on rice yield are projected. The system dynamics model is also equipped by August SOI to estimate the impacts of climate change on the timing of monsoon onset i.e the beginning of planting seasons. For assessing harvested areas under a changing climate, the system dynamics model is equipped by a mathematical relationship between seasonal rainfall and harvested areas.  Because the system dynamics model includes the impacts of high maximum temperature, the projected loss of rice yield in wetland and dryland is relatively higher compared to that in statistical models. It is projected that rice yield loss will be about 3% (RCP2.6 scenario), 6% (RCP4.5 scenario), 10% (RCP6.0 scenario) and 23% (RCP8.5 scenario) by 2090 (2077-2100). Likewise, rice production loss in wetland and dryland is projected to be about 1% (RCP2.6 scenario), 2% (RCP4.5 scenario), 7% (RCP6.0 scenario) and 19% (RCP8.5 scenario) by 2090 (2077-2100). The projected loss of rice production is relatively lower than rice yield loss as wetland harvested areas are projected to experience a slight increase about 3% by 2090 (2077-2100) under a changing climate. This also means that the ranking of the impacts of climate change from the most significant to the least significant is its impact on rice yield, rice production and harvested areas.   Third, policy options in overcoming the impacts of climate change on rice production are assessed. This study suggests that research on finding rice varieties with three main traits: heat tolerance, short growth duration and high yield is key to balance rice demand and rice supply in West Nusa Tenggara by 2090 (2077-2100). A failure to improve rice yield in such ways is likely to lead to significant reductions in rice supply in the face of climate change.  This study makes theoretical contributions, including the development of statistical models for understanding the impacts of climate change on rice yield and a causal system for investigating the impacts of climate change on rice yield, rice production and harvested areas. Again, the combination of statistical and system dynamics modelling simultaneously investigates the impacts of climate change on rice yield, rice production and harvested areas. This means that this study provides a more holistic view of the impacts of climate change compared to existing studies.  This study also offers practical contributions, advising that declining rice research should be avoided under a changing climate, and suggesting that farming intensification (more climate-resilient rice varieties) is more effective than farming extension (area expansion) in sustaining rice production under a changing climate. Again, research on developing more resilient-climate rice varieties is possible as projected rice yield in sustaining rice production by 2090 (2077-2100) is similar to rice’s yield potential.</p>


Author(s):  
S. Cho ◽  
Y.-W. Lee

<p><strong>Abstract.</strong> Climate change is an important factor in vegetation growth, and it is very significant to understand the relationship between climate change and rice yield. China is a food-importing country whose grain consumption is higher than grain production, and which relies on imports of rice, soybean, wheat and other grains. Therefore, in order to secure food security for 1.6 billion people in China, it is necessary to grasp the relationship between climate change and rice yield. In this study, 16 administrative districts in China were selected and designated as study area. This study used annual rice production from the USDA (United States Department of Agriculture) for each of China’s major administrative regions from 1979 to 2009, as well as average climate data from July to August, which were meteorological observations collected from the CRU (Climate Research Unit). Using this data, the rice crop was increased in 10 administrative regions in China and the reduction in rice harvest in 6 administrative areas was confirmed. The relationship between selected rice production and climate change was nonlinear and modelled using a deep neural network, and the validation statistics showed that the performance of DNN was 32-33% better than that of MLR (multiple linear regression). Therefore, a more quantitative analysis of the relationship between climate change and rice yield changes has been made possible through our prediction model. This study is expected to contribute to better food self-sufficiency in China and forecast future grain yields.</p>


2016 ◽  
Vol 8 (6) ◽  
pp. 33 ◽  
Author(s):  
Tianyi Zhang ◽  
Xiaoguang Yang

<p>Climate change has the potential to affect Chinese rice production; however, the rice crop could become more suitable to new climatic conditions because of benefits derived from new agricultural technologies. In this paper, a county-level dataset and crop model were used to analyze actual rice yield suitability by measuring the yield gap and yield stability from 1980 to 2011 in 1561 counties of China. The results showed that the national yield gap between the actual and potential yields was approximately 23.0%, which is close to the threshold for profitable planting. However, a number of counties in the northeastern and southwestern regions showed a 30 to 50% yield gap, which indicates a relatively lower suitability of the rice. The rice yield stability results indicated that the actual stability has exceeded the potential stability in most of the counties of China, thus indicating a high level of suitability. Temporally, a decreasing trend was observed for both the yield gap and stability, suggesting that the suitability of rice in China has improved, which might be associated with the development of agricultural technology. The only noteworthy locations presenting a high yield gap and yield instability were several counties in the northeastern region. Since the northeastern region accounts for a significant proportion of China's rice production, further investigations should be conducted to identify the underlying causes of the yield gaps and determine methods of increasing the yield stability. The implementation of more suitable agricultural technology in the area is also suggested to improve the rice suitability in the region.</p>


2018 ◽  
Vol 5 (2) ◽  
pp. 63-74
Author(s):  
S. Boonwicahi ◽  
S. Shrestha

Songkhram river basin, located in northeast Thailand, is where most of the farmers grow rice in rainy season. The water shortage frequently occurs during dry season as the basin has no dam along the river to store water for agriculture purposes. The river connected with Mekong River. Floods occur in many areas because high rainfall density in the basin and backwater effect from Mekong River. The climate change, temperature rise and uncertainty of rainfall, is significant influence to water availability for agriculture sector as well as agriculture production especially rice production. The study assesses the impact of climate change on irrigation water requirement (IWR) and rice production for KDML 105 rice variety in wet season (July – November) using DSSAT crop simulation model. The predicted of IWR and rice production were used an ensemble of five Regional Circulation Models (RCMs) under RCP4.5 and RCP8.5 scenarios for three future periods. The results show an increasing trend in both maximum and minimum temperature. The maximum and minimum temperatures are expected to rise up to 1.9 °C relative to baseline period (1980-2004) under RCP8.5 scenario in 2080s (2070–2094). Rainfall may decrease in the first future period, 2030s (2020 – 2044), and will rise in the 2055s (2045–2069) and 2080s (2070-2094) periods. Rainfall is projected to increase by 13% and 9% relative to baseline period for RCP4.5 and RCP8.5 scenarios respectively in the last future periods (2080s). Therefore, the water shortage might occur in the first period. The middle and last periods might have flood due to higher of rainfall. The trend of IWR is expected to increase, which may rise by 18% and 5% in 2080s under RCP4.5 and RCP8.5 scenario espectively. Due to the increment of temperature and IWR, rainfed rice yield is found to decrease in the future. The rainfed rice yield may reduce by 14% and 10% for RCP4.5 and RCP8.5 scenario respectively in 2080s. However, the IWR is higher due to temperature rise in the future. The increasing of reservoir capacity and improve the water management practices might reduce the crop water deficit and increase crop production.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 117
Author(s):  
Andrianto Ansari ◽  
Yu-Pin Lin ◽  
Huu-Sheng Lur

Predicting the effect of climate change on rice yield is crucial as global food demand rapidly increases with the human population. This study combined simulated daily weather data (MarkSim) and the CERES-Rice crop model from the Decision Support System for Agrotechnology Transfer (DSSAT) software to predict rice production for three planting seasons under four climate change scenarios (RCPs 2.6, 4.5, 6.0, and 8.5) for the years 2021 to 2050 in the Keduang subwatershed, Wonogiri Regency, Central Java, Indonesia. The CERES-Rice model was calibrated and validated for the local rice cultivar (Ciherang) with historical data using GenCalc software. The model evaluation indicated good performance with both calibration (coefficient of determination (R2) = 0.89, Nash–Sutcliffe efficiency (NSE) = 0.88) and validation (R2 = 0.87, NSE = 0.76). Our results suggest that the predicted changing rainfall patterns, rising temperature, and intensifying solar radiation under climate change can reduce the rice yield in all three growing seasons. Under RCP 8.5, the impact on rice yield in the second dry season may decrease by up to 11.77% in the 2050s. Relevant strategies associated with policies based on the results were provided for decision makers. Furthermore, to adapt the impact of climate change on rice production, a dynamic cropping calendar, modernization of irrigation systems, and integrated plant nutrient management should be developed for farming practices based on our results in the study area. Our study is not only the first assessment of the impact of climate change on the study site but also provides solutions under projected rice shortages that threaten regional food security.


2018 ◽  
Vol 10 (2) ◽  
pp. 242 ◽  
Author(s):  
Mingzhi Yang ◽  
Weihua Xiao ◽  
Yong Zhao ◽  
Xudong Li ◽  
Ya Huang ◽  
...  

The Nanliujiang catchment is one of major rice production bases of South China. Irrigation districts play an important role in rice production which requires a large quantity of water. There are potential risks on future climate change in response to rice production, agricultural irrigation water use and pollution control locally. The SWAT model was used to quantify the yield and water footprint (WF) of rice in this catchment. A combined method of automatic and manual sub-basin delineation was used for the model setup in this work to reflect the differences between irrigation districts in yield and water use of rice. We validated our simulations against observed leaf area index, biomass and yield of rice, evapotranspiration and runoff. The outputs of three GCMs (GFDL-ESM2M, IPSL-CM5A-LR and HadGEM2-ES) under three RCPs (RCP2.6, 4.5, 8.5) were fed to the SWAT model. The results showed that: (a) the SWAT model is an ideal tool to simulate rice development as well as hydrology; (b) there would be increases in rice yield ranged from +1.4 to +10.6% under climate projections of GFDL-ESM2M and IPSL-CM5A-LR but slight decreases ranged from −3.5 to −0.8% under that of HadGEM2-ES; (c) the yield and WFs of rice displayed clear differences in the catchment, with a characteristic that high in the south and low in the north, mainly due to the differences in climatic conditions, soil quality and fertilization amount; (d) there would be a decrease by 45.5% in blue WF with an increase by 88.1% in green WF, which could provide favorable conditions to enlarge irrigated areas and take technical measures for improving green water use efficiency of irrigation districts; (e) a clear rise in future grey WF would present enormous challenges for the protection of water resources and environmental pollution control in this catchment. So it should be to improved nutrient management strategies for the agricultural non-point source pollution control in irrigation districts, especially for the Hongchaojiang and Hepu irrigation districts.


2018 ◽  
Vol 115 (52) ◽  
pp. 13294-13299 ◽  
Author(s):  
Christian Hof ◽  
Alke Voskamp ◽  
Matthias F. Biber ◽  
Katrin Böhning-Gaese ◽  
Eva Katharina Engelhardt ◽  
...  

Climate and land-use change interactively affect biodiversity. Large-scale expansions of bioenergy have been suggested as an important component for climate change mitigation. Here we use harmonized climate and land-use projections to investigate their potential combined impacts on global vertebrate diversity under a low- and a high-level emission scenario. We combine climate-based species distribution models for the world’s amphibians, birds, and mammals with land-use change simulations and identify areas threatened by both climate and land-use change in the future. The combined projected effects of climate and land-use change on vertebrate diversity are similar under the two scenarios, with land-use change effects being stronger under the low- and climate change effects under the high-emission scenario. Under the low-emission scenario, increases in bioenergy cropland may cause severe impacts in biodiversity that are not compensated by lower climate change impacts. Under this low-emission scenario, larger proportions of species distributions and a higher number of small-range species may become impacted by the combination of land-use and climate change than under the high-emission scenario, largely a result of bioenergy cropland expansion. Our findings highlight the need to carefully consider both climate and land-use change when projecting biodiversity impacts. We show that biodiversity is likely to suffer severely if bioenergy cropland expansion remains a major component of climate change mitigation strategies. Our study calls for an immediate and significant reduction in energy consumption for the benefit of both biodiversity and to achieve the goals of the Paris Agreement.


2021 ◽  
Author(s):  
◽  
Muhamad Bahri

<p>Climate change, manifested as temperature rise and rainfall change, will pose significant challenges to rice farmers, leading to a possible rice shortage under a changing climate. This research aims to understand the impacts of climate variability and change on rice production through the rest of this century using Representative Concentration Pathway (RCP) scenarios, and combination of statistical and system dynamic modelling. The area of study is West Nusa Tenggara, Indonesia. Wetland and dryland farming types are assessed separately because they have different rice varieties and different agricultural practices.  Overall, the research seeks to answer the question: How will climate change and climate variability affect rice production? Additional questions investigated are (1) What are the most significant supply uncertainties associated with a changing climate? and (2) What are possible solutions for reducing the impacts of climate change on rice production?. To answer these research questions, this study deals with three main research areas. First, based on observed data (1976-2011), this study developed regression-based statistical models in understanding the impacts of climate change on rice yield in West Nusa Tenggara. Statistical models find that the negative impacts of increased minimum temperature on rice yield are statistically significant.   By contrast, the effects of maximum temperature on rice yield are not statistically significant. A key reason for this is that the highest maximum temperature (32⁰C) in the observed period (1976-2011) was lower than 35⁰C, a rice threshold for maximum temperature. By 2090 (2077-2100), rice yield in wetland and dryland is projected to decrease by about 3% (RCP2.6 scenario), 4% (RCP4.5 scenario), 5% (RCP6.0 scenario) and 14% (RCP8.5 scenario).  Second, a system dynamics model was developed to assess the impacts of climate change on three issues including rice yield, harvested areas and rice production by 2090 (2077-2100). After embedding statistical models and estimating the impacts of maximum temperature on rice yield based on existing studies, the impacts of climate change on rice yield are projected. The system dynamics model is also equipped by August SOI to estimate the impacts of climate change on the timing of monsoon onset i.e the beginning of planting seasons. For assessing harvested areas under a changing climate, the system dynamics model is equipped by a mathematical relationship between seasonal rainfall and harvested areas.  Because the system dynamics model includes the impacts of high maximum temperature, the projected loss of rice yield in wetland and dryland is relatively higher compared to that in statistical models. It is projected that rice yield loss will be about 3% (RCP2.6 scenario), 6% (RCP4.5 scenario), 10% (RCP6.0 scenario) and 23% (RCP8.5 scenario) by 2090 (2077-2100). Likewise, rice production loss in wetland and dryland is projected to be about 1% (RCP2.6 scenario), 2% (RCP4.5 scenario), 7% (RCP6.0 scenario) and 19% (RCP8.5 scenario) by 2090 (2077-2100). The projected loss of rice production is relatively lower than rice yield loss as wetland harvested areas are projected to experience a slight increase about 3% by 2090 (2077-2100) under a changing climate. This also means that the ranking of the impacts of climate change from the most significant to the least significant is its impact on rice yield, rice production and harvested areas.   Third, policy options in overcoming the impacts of climate change on rice production are assessed. This study suggests that research on finding rice varieties with three main traits: heat tolerance, short growth duration and high yield is key to balance rice demand and rice supply in West Nusa Tenggara by 2090 (2077-2100). A failure to improve rice yield in such ways is likely to lead to significant reductions in rice supply in the face of climate change.  This study makes theoretical contributions, including the development of statistical models for understanding the impacts of climate change on rice yield and a causal system for investigating the impacts of climate change on rice yield, rice production and harvested areas. Again, the combination of statistical and system dynamics modelling simultaneously investigates the impacts of climate change on rice yield, rice production and harvested areas. This means that this study provides a more holistic view of the impacts of climate change compared to existing studies.  This study also offers practical contributions, advising that declining rice research should be avoided under a changing climate, and suggesting that farming intensification (more climate-resilient rice varieties) is more effective than farming extension (area expansion) in sustaining rice production under a changing climate. Again, research on developing more resilient-climate rice varieties is possible as projected rice yield in sustaining rice production by 2090 (2077-2100) is similar to rice’s yield potential.</p>


2021 ◽  
Vol 56 (1) ◽  
pp. 48-64
Author(s):  
D.H. Yakubu ◽  
J.G. Akpoko ◽  
M.O. Akinola ◽  
Z. Abdulsalam

Rice farming is highly dependent on environmental factors such as rainfall and temperature. Rice yield is affected by changes in these climatic elements. Rice farmers’ perceptions of the changes in climate are important determinants of the management practices they use in reducing the effects on rice production. This study assessed the perceived effects of climate change on rice production among farmers. A multistage sampling procedure was used to obtain a sample of 522 farmers. Data were obtained with the aid of structured questionnaire. The data were analyzed using both descriptive and inferential statistics. Findings revealed that majority (94%) of the respondents were males. They were married (88%) and had farming as a major occupation (89%). They perceived that climate change was posing risks to rice production (X = 2.16), would lower rice production (X = 2.07) and would continue to affect storage of rice (X = 2.01). The study determined a significant relationship (p<0.01) between farmers’ perceived effects of climate change and rice yield. It was concluded that positive perception can lead to high adoption of climate change adaptation practices. The climate change knowledge-base of the farmers needs to be improved through more sensitization on climate smart agriculture.


Author(s):  
Bùi Thị Thu Trang ◽  
Nguyễn Thị Hồng Hạnh

Abstract: This study analyses the impacts of climate change on rice production and adaptation in Nui Thanh district, Quang Nam province. This study pursues to seek following queries including forecast future rainfall, temperature, rice yield, and analyze adaptation measures to improve rice production under different climate change scenarios in Nui Thanh district, Quang Nam province, Vietnam. The study was based on firstly identification of the problem in the study area followed by collection of secondary data on weather, soil characteristics and crop management. Then the downscaling model was used to predict the temperature and precipitation of the study area in the future by A2 and B2 scenarios. The Aquacrop model was used to simulate the yield response. After that, the impact of climate change scenarios on rice yield was analyzed. Lastly, the evaluation for adaptation measure to improve rice production under climate change based on water management was determined. Results show that climate change will reduce rice yield from 1.29 to 23.05% during the winter season for both scenarios and all time periods, whereas an increase in yield by 2.07 to 6.66% is expected in the summer season for the 2020s and 2050s; relative to baseline yield. The overall decrease of rice yield in the winter season can be offset, and rice yield in the summer season can be enhanced to potential levels by altering the transplanting dates and by introducing supplementary irrigation. Late transplanting of rice shows an increase of yield by 20-27% in future. Whereas supplementary irrigation of rice in the winter season shows an increase in yield of up to 42% in future. Increasing the fertilizer application rate enhances the yield from 0.3 to 29.8% under future climates. Similarly, changing the number of doses of fertilizer application increased rice yield by 1.8 to 5.1%, relative to the current practice of single dose application. Shifting to other heat tolerant varieties also increased the rice production.


Sign in / Sign up

Export Citation Format

Share Document