Cytotoxic lymphocytes, apoptosis, and autoimmunity

2005 ◽  
pp. 188-218
Author(s):  
Pere Santamaria ◽  
R. Chris Bleackly
2021 ◽  
Vol 22 (13) ◽  
pp. 6889
Author(s):  
Tatiana N. Sharapova ◽  
Elena A. Romanova ◽  
Olga K. Ivanova ◽  
Denis V. Yashin ◽  
Lidia P. Sashchenko

The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate immunity receptor expressed on monocytes. The Hsp70–TREM-1 interaction activates expression of TNFα and IFNγ mRNAs in monocytes and stimulates IL-2 secretion by РВМСs. Moreover, incubation of РВМСs with Hsp70 leads to an appearance of cytotoxic lymphocyte subpopulations active against the MHC-negative tumor cells. In addition, both the CD4+ Т-lymphocytes and CD14+ monocytes are necessary for the Hsp70 signal transduction and a consequent activation of the cytotoxic lymphocytes. We believe that data presented in this study will broaden the views on the involvement of Hsp70 in the antitumor immunity.


Author(s):  
Manuel Guerreiro ◽  
Cristóbal Aguilar‐Gallardo ◽  
Juan Montoro ◽  
Clara Francés‐Gómez ◽  
Víctor Latorre ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 770-781 ◽  
Author(s):  
Mithun Vinod Shah ◽  
Ranran Zhang ◽  
Rosalyn Irby ◽  
Ravi Kothapalli ◽  
Xin Liu ◽  
...  

Abstract T-cell large granular lymphocyte (LGL) leukemia is characterized by clonal expansion of CD3+CD8+ cells. Leukemic LGLs correspond to terminally differentiated effector-memory cytotoxic T lymphocytes (CTLs) that escape Fas-mediated activation-induced cell death (AICD) in vivo. The gene expression signature of peripheral blood mononuclear cells from 30 LGL leukemia patients showed profound dysregulation of expression of apoptotic genes and suggested uncoupling of activation and apoptotic pathways as a mechanism for failure of AICD in leukemic LGLs. Pathway-based microarray analysis indicated that balance of proapoptotic and antiapoptotic sphingolipid-mediated signaling was deregulated in leukemic LGLs. We further investigated sphingolipid pathways and found that acid ceramidase was constitutively overexpressed in leukemic LGLs and that its inhibition induced apoptosis of leukemic LGLs. We also showed that S1P5 is the predominant S1P receptor in leukemic LGLs, whereas S1P1 is down-regulated. FTY720, a functional antagonist of S1P-mediated signaling, induced apoptosis in leukemic LGLs and also sensitized leukemic LGLs to Fas-mediated death. Collectively, these results show a role for sphingolipid-mediated signaling as a mechanism for long-term survival of CTLs. Therapeutic targeting of this pathway, such as use of FTY720, may have efficacy in LGL leukemia.


1998 ◽  
Vol 18 (11) ◽  
pp. 6387-6398 ◽  
Author(s):  
Catherina H. Bird ◽  
Vivien R. Sutton ◽  
Jiuru Sun ◽  
Claire E. Hirst ◽  
Andrea Novak ◽  
...  

ABSTRACT Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.


1983 ◽  
Vol 15 (1) ◽  
pp. 136
Author(s):  
Jonathan S. Berek ◽  
Neville F. Hacker ◽  
Jacob Zighelboim ◽  
Alan Lichtenstein ◽  
Reba Knox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document