scholarly journals Imaging Developmental and Interventional Plasticity Following Perinatal Stroke

Author(s):  
Brandon T. Craig ◽  
Alicia Hilderley ◽  
Adam Kirton ◽  
Helen L. Carlson

ABSTRACT: Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.

Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


2011 ◽  
Vol 69 (2a) ◽  
pp. 242-252 ◽  
Author(s):  
Giuseppe Pastura ◽  
Paulo Mattos ◽  
Emerson Leandro Gasparetto ◽  
Alexandra Prufer de Queiroz Campos Araújo

Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated girus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging.


2010 ◽  
Vol 68 ◽  
pp. 440-440
Author(s):  
B Milewska-Bobula ◽  
B Lipka ◽  
J Zebrowska ◽  
E Jurkiewicz ◽  
I Pakula-Kosciesza ◽  
...  

2016 ◽  
Vol 27 (8) ◽  
pp. 871-885 ◽  
Author(s):  
Golrokh Mirzaei ◽  
Hojjat Adeli

AbstractIn recent years, there has been considerable research interest in the study of brain connectivity using the resting state functional magnetic resonance imaging (rsfMRI). Studies have explored the brain networks and connection between different brain regions. These studies have revealed interesting new findings about the brain mapping as well as important new insights in the overall organization of functional communication in the brain network. In this paper, after a general discussion of brain networks and connectivity imaging, the brain connectivity and resting state networks are described with a focus on rsfMRI imaging in stroke studies. Then, techniques for preprocessing of the rsfMRI for stroke patients are reviewed, followed by brain connectivity processing techniques. Recent research on brain connectivity using rsfMRI is reviewed with an emphasis on stroke studies. The authors hope this paper generates further interest in this emerging area of computational neuroscience with potential applications in rehabilitation of stroke patients.


2020 ◽  
pp. 028418512093447
Author(s):  
Chun-yan Lu ◽  
Sha Zhao ◽  
Yi Wei

Background Neuroschistosomiasis is not commonly encountered and is probably underrecognized. We hope these findings can help clinicians and radiologists to raise awareness of this disabling disorder. Purpose To demonstrate the magnetic resonance imaging (MRI) findings of cerebral schistosomiasis and correlate it with pathological findings. Material and Methods We identified seven patients with cerebral schistosomiasis from radiology and pathology archives of our hospital. Of the seven patients, six were pathologically confirmed. The remaining patient had pathologically confirmed spinal schistosomiasis with MRI findings of cerebral involvement. MRI and pathological findings of these patients were analyzed and correlated. Results Multiple enhancing nodules at varying size were found in all patients. Prominent leptomeningeal or choroidal veins were found in six patients, four at the center of the foci and two at the periphery. Hemorrhage was identified in two patients. Histology revealed granulomas around ova in six patients. A prominent vein with ova in the lumen and wall of a vein was found in one patient and perivascular ova deposition was found in one patient. Conclusion Multiple enhancing nodules with central or peripheral veins in a circumscribed brain area are important signs to the diagnosis of cerebral schistosomiasis. The inflamed veins involved may be the route taken by the ova to spread to the brain tissue.


US Neurology ◽  
2013 ◽  
Vol 09 (01) ◽  
pp. 8
Author(s):  
David A Ziegler ◽  
Suzanne Corkin ◽  
◽  

The pathophysiology of idiopathic Parkinson disease (PD) is traditionally characterized as substantia nigra degeneration, but careful examination of the widespread neuropathologic changes suggests individual differences in neuronal vulnerability. A major limitation to studies of disease progression in PD has been that conventional magnetic resonance imaging (MRI) techniques provide relatively poor contrast for the structures that are affected by the disease, and thus are not typically used in experimental or clinical studies. Here, we review the current state of structural MRI as applied to the analysis of the PD brain. We also describe a new multispectral MRI method that provides improved contrast for the substantia nigra and basal forebrain, which we recently used to show that these structures display different trajectories of volume loss early in the disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Abdulaziz Ibrahim Al Thafar ◽  
Abdullatif Sami Al Rashed ◽  
Bayan Abdullah Al Matar ◽  
Abdulaziz Mohammad Al-Sharydah ◽  
Abdulrahman Hamad Al-Abdulwahhab ◽  
...  

Background. Porencephaly is an extremely rare neurological disease characterized by the presence of solitary or multiple degenerative cerebrospinal fluid (CSF) cavities within the brain parenchyma. Case Report. We describe a case involving a 23-year-old male who presented with involuntary movements of the left upper limb of 6 months’ duration. A diagnosis of porencephaly was confirmed by magnetic resonance imaging (MRI). Conclusion. The rarity of occurrence and atypical presentation of such a lesion present a challenge to clinicians. Little is known about the pathogenesis and appropriate management of porencephaly. Further studies of the implications of porencephaly for neurodevelopment and behavior are needed.


Sign in / Sign up

Export Citation Format

Share Document