scholarly journals THE EVOLUTION OF VIRTUAL REALITY TOWARDS THE USAGE IN EARLY DESIGN PHASES

2020 ◽  
Vol 1 ◽  
pp. 91-100 ◽  
Author(s):  
H.-P. Balzerkiewitz ◽  
C. Stechert

AbstractThe aim of the present work is to show possibilities with which 3D models in virtual reality (VR) can be created and exported. First an overview of the existing hard- and software is given. Subsequently, existing solution concepts are analysed which, however, are not used in product development. Based on these knowledge a concept for the creation of 3D models in VR and the export of these models is developed.


Author(s):  
S. Gonizzi Barsanti ◽  
S. G. Malatesta ◽  
F. Lella ◽  
B. Fanini ◽  
F. Sala ◽  
...  

The best way to disseminate culture is, nowadays, the creation of scenarios with virtual and augmented reality that supply the visitors of museums with a powerful, interactive tool that allows to learn sometimes difficult concepts in an easy, entertaining way. 3D models derived from reality-based techniques are nowadays used to preserve, document and restore historical artefacts. These digital contents are also powerful instrument to interactively communicate their significance to non-specialist, making easier to understand concepts sometimes complicated or not clear. Virtual and Augmented Reality are surely a valid tool to interact with 3D models and a fundamental help in making culture more accessible to the wide public. These technologies can help the museum curators to adapt the cultural proposal and the information about the artefacts based on the different type of visitor’s categories. These technologies allow visitors to travel through space and time and have a great educative function permitting to explain in an easy and attractive way information and concepts that could prove to be complicated. The aim of this paper is to create a virtual scenario and an augmented reality app to recreate specific spaces in the Capitoline Museum in Rome as they were during Winckelmann’s time, placing specific statues in their original position in the 18th century.



2021 ◽  
Vol 25 (4) ◽  
pp. 45-56
Author(s):  
Paulina Pietruś ◽  
Magdalena Muszyńska ◽  
Dariusz Szybicki

The use of VR technology in various industries, including in the industry is constantly growing. ABB is one of the first companies to introduce programming using virtual reality to its offer. This system greatly facilitates the work of an engineer, allowing the user to interact with 3D models through virtual reality goggles. The article presents the design and software of a robotic station that enables the creation of movement instructions using virtual reality technology. The review of the existing industrial solutions using VR technology in welding simulators and other industries. A project of a welding station in the RobotStudio environment was presented and built. Software was written using virtual reality and a model of the real tool was made using the 3D printing method. The designed welding station was tested.



2016 ◽  
Vol 8 (3) ◽  
pp. 59-64 ◽  
Author(s):  
Жвад ◽  
Akhmed Zhvad ◽  
Лавлинский ◽  
V. Lavlinskiy ◽  
Савченко ◽  
...  

Bases of the shaping 3D models are considered In article for designing a modern MOS - transistor with use the syntheses to virtual reality in purpose of the creation in CAD bases electronic component super large scale integration circuit.



2021 ◽  
Vol 1744 (3) ◽  
pp. 032015
Author(s):  
Song Wang ◽  
Qing Xu ◽  
Yaojie Liu


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew D. Guay ◽  
Zeyad A. S. Emam ◽  
Adam B. Anderson ◽  
Maria A. Aronova ◽  
Irina D. Pokrovskaya ◽  
...  

AbstractBiologists who use electron microscopy (EM) images to build nanoscale 3D models of whole cells and their organelles have historically been limited to small numbers of cells and cellular features due to constraints in imaging and analysis. This has been a major factor limiting insight into the complex variability of cellular environments. Modern EM can produce gigavoxel image volumes containing large numbers of cells, but accurate manual segmentation of image features is slow and limits the creation of cell models. Segmentation algorithms based on convolutional neural networks can process large volumes quickly, but achieving EM task accuracy goals often challenges current techniques. Here, we define dense cellular segmentation as a multiclass semantic segmentation task for modeling cells and large numbers of their organelles, and give an example in human blood platelets. We present an algorithm using novel hybrid 2D–3D segmentation networks to produce dense cellular segmentations with accuracy levels that outperform baseline methods and approach those of human annotators. To our knowledge, this work represents the first published approach to automating the creation of cell models with this level of structural detail.



2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii461-iii461
Author(s):  
Andrea Carai ◽  
Angela Mastronuzzi ◽  
Giovanna Stefania Colafati ◽  
Paul Voicu ◽  
Nicola Onorini ◽  
...  

Abstract Tridimensional (3D) rendering of volumetric neuroimaging is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precisely performed in the OR, connecting the system to intraoperative neuronavigation. Smaller blood vessels are generally not included in the 3D rendering, however, real-time intraoperative threshold modulation of the 3D model assisted in their identification improving surgical confidence and safety during the procedure. VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to tailor surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.



2021 ◽  
Author(s):  
Haowen Jiang ◽  
Sunitha Vimalesvaran ◽  
Jeremy King Wang ◽  
Kee Boon Lim ◽  
Sreenivasulu Reddy Mogali ◽  
...  

BACKGROUND Virtual reality (VR) is a digital education modality that produces a virtual manifestation of the real world and it has been increasingly used in medical education. As VR encompasses different modalities, tools and applications, there is a need to explore how VR has been employed in medical education. OBJECTIVE The objective of this scoping review is to map existing research on the use of VR in undergraduate medical education and to identify areas of future research METHODS We performed a search of 4 bibliographic databases in December 2020, with data extracted using a standardized data extraction form. The data was narratively synthesized and reported in line with the PRISMA-ScR guidelines. RESULTS Of 114 included studies, 69 studies (61%) reported the use of commercially available surgical VR simulators. Other VR modalities included 3D models (15 [14%]) and virtual worlds (20 [18%]), mainly used for anatomy education. Most of the VR modalities included were semi-immersive (68 [60%]) and of high interactivity (79 [70%]). There is limited evidence on the use of more novel VR modalities such as mobile VR and virtual dissection tables (8 [7%]), as well as the use of VR for training of non-surgical and non-psychomotor skills (20 [18%]) or in group setting (16 [14%]). Only 3 studies reported the use conceptual frameworks or theories in the design of VR. CONCLUSIONS Despite extensive research available on VR in medical education, there continues to be important gaps in the evidence. Future studies should explore the use of VR for the development of non-psychomotor skills and in areas other than surgery and anatomy.



2018 ◽  
Vol 43 (4) ◽  
pp. 517-543 ◽  
Author(s):  
Ruggero Sainaghi ◽  
Manuela De Carlo ◽  
Francesca d’Angella

This article aims to identify the key elements underlying a destination capability (DC) and to examine what the genesis of these factors is and how they interact to foster the destination development. The article explores a specific development process—the creation of a new product in an alpine destination (Livigno, Italy)—making use of a theoretical framework structured around four major dimensions: DCs, coordination at the destination level, inter-destination bridge ties, and destination development. The results help clarify the genesis of a DC in the context of new product development. First, the dynamics underlying the creation of a DC show that coordination at the destination level constitutes the heart of the process, whereas the integration of scattered resources in the new product plays a more limited role. Second, from a dynamic perspective, the analysis has identified three patterns (scouting, implementation, and involvement).



Author(s):  
G. Kontogianni ◽  
A. Georgopoulos

Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D<sup>®</sup> game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.



Sign in / Sign up

Export Citation Format

Share Document