scholarly journals Ultrafast ignition with relativistic shock waves induced by high power lasers

Author(s):  
Shalom Eliezer ◽  
Noaz Nissim ◽  
Shirly Vinikman Pinhasi ◽  
Erez Raicher ◽  
José Maria Martinez Val

Abstract In this paper we consider laser intensities greater than $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}10^{16}\ \mathrm{W\ cm}^{-2}$ where the ablation pressure is negligible in comparison with the radiation pressure. The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer (DL). This DL is accelerated into the target, like a piston that pushes the matter in such a way that a shock wave is created. Here we discuss two novel ideas. Firstly, the transition domain between the relativistic and non-relativistic laser-induced shock waves. Our solution is based on relativistic hydrodynamics also for the above transition domain. The relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and rarefaction wave velocity in the compressed target, and temperature are calculated. Secondly, we would like to use this transition domain for shock-wave-induced ultrafast ignition of a pre-compressed target. The laser parameters for these purposes are calculated and the main advantages of this scheme are described. If this scheme is successful a new source of energy in large quantities may become feasible.

2013 ◽  
Vol 31 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Shalom Eliezer ◽  
Jose Maria Martinez Val ◽  
Shirly Vinikman Pinhasi

AbstractDue to the recent developments in high power lasers in the multi-petawatt domain it seems now feasible to accelerate a micro-foil to relativistic velocities. In this paper, we calculate analytically the high velocities achieved by the ponderomotive force of the irradiating laser. The accelerated foil collides with a second foil resulting in the creation of the relativistic shock waves. The density, pressure, temperature, and shock wave velocities are calculated within the context of relativistic fluid dynamics. The calculated thermodynamic parameters that are achieved in these collisions are enormous.


2014 ◽  
Vol 32 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Shalom Eliezer ◽  
Noaz Nissim ◽  
Erez Raicher ◽  
José Maria Martínez-Val

AbstractThis paper analyzes the one dimensional shock wave created in a planar target by the ponderomotive force induced by very high laser irradiance. The laser-induced relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and temperature are calculated here for the first time in the context of relativistic hydrodynamics. For solid targets and laser irradiance of about 2 × 1024 W/cm2, the shock wave velocity is larger than 50% of the speed of light, the shock wave compression is larger than 4 (usually of the order of 10) and the targets have a pressure of the order of 1015 atmospheres. The estimated temperature can be larger than 1 MeV in energy units and therefore very excited physics (like electron positron formation) is expected in the shocked area. Although the next generation of lasers might allow obtaining relativistic shock waves in the laboratory this possibility is suggested in this paper for the first time.


1996 ◽  
Vol 14 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Yuan Gu ◽  
Sizu Fu ◽  
Jiang Wu ◽  
Songyu Yu ◽  
Yuanlong Ni ◽  
...  

The experimental progress of laser equation of state (EOS) studies at Shanghai Institute of Laser Plasma (SILP) is discussed in this paper. With a unique focal system, the uniformity of the laser illumination on the target surface is improved and a laser-driven shock wave with good spatial planarity is obtained. With an inclined aluminum target plane, the stability of shock waves are studied, and the corresponding thickness range of the target of laser-driven shock waves propagating steadily are given. The shock adiabats of Cu, Fe, SiO2 are experimentally measured. The pressure in the material is heightened remarkably with the flyer increasing pressure, and the effect of the increasing pressure is observed. Also, the high-pressure shock wave is produced and recorded in the experimentation of indirect laser-driven shock waves with the hohlraum target.


2007 ◽  
Vol 106 (4) ◽  
pp. 667-676 ◽  
Author(s):  
Kaoruko Kato ◽  
Miki Fujimura ◽  
Atsuhiro Nakagawa ◽  
Atsushi Saito ◽  
Tomohiro Ohki ◽  
...  

Object Shock waves have been experimentally applied to various neurosurgical treatments including fragmentation of cerebral emboli, perforation of cyst walls or tissue, and delivery of drugs into cells. Nevertheless, the application of shock waves to clinical neurosurgery remains challenging because the threshold for shock wave–induced brain injury has not been determined. The authors investigated the pressure-dependent effect of shock waves on histological changes of rat brain, focusing especially on apoptosis. Methods Adult male rats were exposed to a single shot of shock waves (produced by silver azide explosion) at over-pressures of 1 or 10 MPa after craniotomy. Histological changes were evaluated sequentially by H & E staining and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling (TUNEL). The expression of active caspase-3 and the effect of the nonselective caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) were examined to evaluate the contribution of a caspase-dependent pathway to shock wave–induced brain injury. High-overpressure (> 10 MPa) shock wave exposure resulted in contusional hemorrhage associated with a significant increase in TUNEL-positive neurons exhibiting chromatin condensation, nuclear segmentation, and apoptotic bodies. The maximum increase was seen at 24 hours after shock wave application. Low-overpressure (1 MPa) shock wave exposure resulted in spindle-shaped changes in neurons and elongation of nuclei without marked neuronal injury. The administration of Z-VAD-FMK significantly reduced the number of TUNEL-positive cells observed 24 hours after high-overpressure shock wave exposure (p < 0.01). A significant increase in the cytosolic expression of active caspase-3 was evident 24 hours after high-overpressure shock wave application; this increase was prevented by Z-VAD-FMK administration. Double immunofluorescence staining showed that TUNEL-positive cells were exclusively neurons. Conclusions The threshold for shock wave–induced brain injury is speculated to be under 1 MPa, a level that is lower than the threshold for other organs. High-overpressure shock wave exposure results in brain injury, including neuronal apoptosis mediated by a caspase-dependent pathway. This is the first report in which the pressure-dependent effect of shock wave on the histological characteristics of brain tissue is demonstrated.


Author(s):  
Tomohiro Furusato ◽  
Mitsuru Sasaki ◽  
Yoshinobu Matsuda ◽  
Takahiko Yamashita

Abstract Plasmas on liquids have provided significant applications in material, environmental, and biological sciences. The mechanisms of these chemical reactions in liquids have been primarily discussed by the plasma–liquid interactions and convection by an electrohydrodynamic flow. Although shock waves play a significant role in the radical formation, agitation, and cell destruction, not much information is available on underwater shock waves induced by the surface discharge on water. In this study, an underwater shock wave generated by the pulsed surface discharge on water using the laser shadowgraph method has been demonstrated. The results reveal that the shock wave generated by the discharge on water was transmitted into the water. The mean velocity of the shock wave reached 1.7 km/s. The results indicate that the surface discharge accelerates the reaction in the water by the combined action of the underwater shock wave and the plasma reaction at the air–water interface. The results are expected to aid in the understanding the mechanisms of existing applications, such as decomposition, synthesis, and sterilization.


2005 ◽  
Vol 109 (1101) ◽  
pp. 537-556 ◽  
Author(s):  
A. Bagabir ◽  
D. Drikakis

Abstract The paper presents an investigation of flow instabilities occurring in shock-wave propagation and interaction with the walls of an enclosure. The shock-wave propagation is studied in connection with perturbed and unperturbed cylindrical blasts, initially placed in the centre of the enclosure, as well as for three different blast intensities corresponding to Mach numbers Ms = 2, 5 and 10. The instability is manifested by a symmetry-breaking of the flow even for the case of an initially perfectly-symmetric blast. It is shown that the symmetry-breaking initiates around the centre of the enclosure as a result of the interaction of the shock waves reflected from the walls, with the low-density region in the centre of the explosion. The instability leads to fast attenuation of the shock waves, especially for smaller initial blast intensities. The computations reveal that the vortical flow structures arising from the multiple shock reflections and flow instability are Mach number dependent. The existence of perturbations of large amplitude in the initial condition strengthens the instability and has significant effects on the instantaneous wall pressure distributions. The computational investigation has been performed using high-resolution Riemann solvers for the gas dynamic equations.


Author(s):  
M. Sotudeh-Chafi ◽  
N. Abolfathi ◽  
A. Nick ◽  
V. Dirisala ◽  
G. Karami ◽  
...  

Traumatic brain injuries (TBIs) involve a significant portion of human injuries resulting from a wide range of civilian accidents as well as many military scenarios. Axonal damage is one of the most common and important pathologic features of traumatic brain injury. Axons become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton, resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate organelles. Ultimately, swollen axons may become disconnected [1]. The shock waves generated by a blast, subject all the organs in the head to displacement, shearing and tearing forces. The brain is especially vulnerable to these forces — the fronts of compressed air waves cause rapid forward or backward movements of the head, so that the brain rattles against the inside of the skull. This can cause subdural hemorrhage and contusions. The forces exerted on the brain by shock waves are known to damage axons in the affected areas. This axonal damage begins within minutes of injury, and can continue for hours or days following the injury [2]. Shock waves are also known to damage the brain at the subcellular level, but exactly how remains unclear. Kato et al., [3] described the effects of a small controlled explosion on rats’ brain tissue. They found that high pressure shock waves led to contusions and hemorrhage in both cortical and subcortical brain regions. Based on their result, the threshold for shock wave-induced brain injury is speculated to be under 1 MPa. This is the first report to demonstrate the pressure-dependent effect of shock wave on the histological characteristics of brain tissue. An important step in understanding the primary blast injury mechanism due to explosion is to translate the global head loads to the loading conditions, and consequently damage, of the cells at the local level and to project cell level and tissue level injury criteria towards the level of the head. In order to reach this aim, we have developed a multi-scale non-linear finite element modeling to bridge the micro- and macroscopic scales and establish the connection between microstructure and effective behavior of brain tissue to develop acceptable injury threshold. Part of this effort has been focused on measuring the shock waves created from a blast, and studying the response of the brain model of a human head exposed to such an environment. The Arbitrary Lagrangian Eulerian (ALE) and Fluid/Solid Interactions (FSI) formulation have been used to model the brain-blast interactions. Another part has gone into developing a validated fiber-matrix based micro-scale model of a brain tissue to reproduce the effective response and to capturing local details of the tissue’s deformations causing axonal injury. The micro-model of the axon and matrix is characterized by a transversely isotropic viscoelastic material and the material model is formulated for numerical implementation. Model parameters are fit to experimental frequency response of the storage and loss modulus data obtained and determined using a genetic algorithm (GA) optimizing method. The results from macro-scale model are used in the micro-scale brain tissue to study the effective behavior of this tissue under injury-based loadings. The research involves the development of a tool providing a better understanding of the mechanical behavior of the brain tissue against blast loads and a rational multi-scale approach for driving injury criteria.


1999 ◽  
Vol 17 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M. WERDIGER ◽  
S. ELIEZER ◽  
S. MAMAN ◽  
Y. HOROVITZ ◽  
B. ARAD ◽  
...  

Holographic methods developed to study the behavior of surfaces shocked by high power lasers are reported. Shock waves of the order of hundreds of kilobars are generated in Sn targets 50-μm thick, by a Nd:YAG laser system with a wavelength of 1.06 μm, a pulse duration of 7.5 ns FWHM, and irradiance in the range (1.0–2.6)·1013 W/cm2. Two configurations of off-axis holography were applied: holograms based on forward scattering, and holograms of both backward and forward scattering. The hologram is produced by scattering of a pulse, 6.7 ns (FWHM), of green laser light synchronized with the laser that generates the shock wave. Holograms of the topology of the rear surface of shocked Sn targets moving in vacuum and in air (at atmospheric pressure) are reported.


2019 ◽  
Vol 52 (5) ◽  
pp. 1016-1021 ◽  
Author(s):  
A. Sivakumar ◽  
S. A. Martin Britto Dhas

It is well known that super-cooled materials can be crystallized under the application of shock waves. This is the first report describing crystallization from unsaturated liquids. Shock-wave-induced crystallization of salts from environmental ground and sea water samples is explored. A table-top pressure-driven shock tube is utilized so as to produce the required shock waves of Mach numbers 1.1, 1.2, 1.4, 2.2 and 4.7. The demonstration comprises a train of acoustic shock pulses applied to the water samples. As a consequence of the impact of the shock waves, the colourless water becomes turbid, following which tiny crystallites are precipitated at the bottom of the vessel after a few minutes. The obtained precipitate is subjected to powder X-ray diffraction and energy-dispersive X-ray spectroscopy analysis to confirm the nature of the settled particles and the elements present in them, respectively. From the observed results, it is concluded that shock-wave-induced crystallization in water provides an alternative method for removing dissolved salts from both ground and sea water samples.


Sign in / Sign up

Export Citation Format

Share Document