On generation of sound in wall-bounded shear flows: back action of sound and global acoustic coupling

2011 ◽  
Vol 689 ◽  
pp. 279-316 ◽  
Author(s):  
Xuesong Wu

AbstractIn two previous papers (Wu, J. Fluid Mech., vol. 453, 2002, p. 289, and Wu & Hogg, J. Fluid Mech., vol. 550, 2006, p. 307), a formal asymptotic procedure was developed to calculate the sound radiated by unsteady boundary-layer flows that are described by the triple-deck theory. That approach requires lengthy calculations, and so is now improved to construct a simpler composite theory, which retains the capacity of systematically identifying and approximating the relevant sources, but also naturally includes the effect of mean-flow refraction and more importantly the back action of the emitted sound on the source itself. The combined effect of refraction and back action is represented by an ‘impedance coefficient’, and the present analysis yields an analytical expression for this parameter, which was usually introduced on a semi-empirical basis. The expression indicates that for Mach number $M= O(1)$, the mean-flow refraction and back action of the sound have a leading-order effect on the acoustic field within the shallow angles to the streamwise directions. A parametric study suggests that the back effect of sound is actually appreciable in a sizeable portion of the acoustic field for $M\gt 0. 5$, becomes more pronounced, and eventually influences the entire acoustic field in the transonic limit. In the supersonic regime, the acoustic field is characterized by distinctive Mach-wave beams, which exert a leading-order influence on the source. The analysis also indicates that acoustic radiation in the subsonic and supersonic regimes is fundamentally different. In the subsonic regime, the sound is produced by small-wavenumber components of the hydrodynamic motion, and can be characterized by acoustic multipoles, whereas in the supersonic regime, broadband finite-wavenumber components of the hydrodynamic motion contribute and the concept of a multipolar source becomes untenable. The global acoustic feedback loop is investigated using a model consisting of two well-separated roughness elements, in which the sound wave emitted due to the scattering of a Tollmien–Schlichting (T–S) wave by the downstream roughness propagates upstream and impinges on the upstream roughness to regenerate the T–S wave. Numerical calculations suggest that at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to global instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number or the distance between the roughness elements is varied gradually.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingtao Gong ◽  
Zhanyang Chen ◽  
Hongbin Gui ◽  
Dong Yu

The underwater acoustic radiation of the submarine power cabin has recently become a hot topic in the industry and also in the academia. In this article, the vibration and underwater acoustic radiation of a ring-stiffened conical shell with bases are investigated numerically by means of the combination of the finite element method and boundary element method. The acoustic radiation field is obtained by the traditional acoustic field model and ISO acoustic field model, respectively. A series of numerical examples are given, and the results are compared. Besides, the sound pressure at different positions with frequency is further studied. It is shown that the sound radiated by the structure mainly propagates to the side directions of the shell and propagates relatively less to the front side and the rear side.


Author(s):  
Xuesong Wu

In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien–Schlichting (T–S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T–S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic ‘twin boundary layers’ that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer.


Author(s):  
Xuesong Wu ◽  
Zhongyu Zhang

As a methodology complementary to acoustic analogy, the asymptotic approach to aeroacoustics seeks to predict aerodynamical noise on the basis of first principles by probing into the physical processes of acoustic radiation. The present paper highlights the principal ideas and recent developments of this approach, which have shed light on some of the fundamental issues in sound generation in shear flows. The theoretical work on sound wave emission by nonlinearly modulated wavepackets of supersonic and subsonic instability modes in free shear flows identifies the respective physical sources or emitters. A wavepacket of supersonic modes is itself an efficient emitter, radiating directly intensive sound in the form of a Mach wave beam, the frequencies of which are in the same band as those of the modes in the packet. By contrast, a wavepacket of subsonic modes radiates very weak sound directly. However, the nonlinear self-interaction of such a wavepacket generates a slowly modulated mean-flow distortion, which then emits sound waves with low frequencies and long wavelengths on the scale of the wavepacket envelope. In both cases, the acoustic waves emitted to the far field are explicitly expressed in terms of the amplitude function of the wavepacket. The asymptotic approach has also been applied to analyse generation of sound waves in wall-bounded shear flows on the triple-deck scale. Several subtleties have been found. The near-field approximation has to be worked out to a sufficiently higher order in order just to calculate the far-field sound at leading order. The back action of the radiated sound on the flow in the viscous sublayer and the main shear layer is accounted for by an impedance coefficient. This effect is of higher order in the subsonic regime, but becomes a leading order in the transonic and supersonic regimes. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


2011 ◽  
Vol 2-3 ◽  
pp. 733-738
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Yi Qun Du

To overcome the non-uniqueness of solution at eigenfrequencies in the boundary integral equation method for structural acoustic radiation, wave superposition method is introduced to study the acoustics characteristics including acoustic field reconstruction and sound power calculation. The numerical method is implemented by using the acoustic field from a series of virtual sources which are collocated near the boundary surface to replace the acoustic field of the radiator, namely the principle of equivalent. How to collocate these equivalent sources is not indicated definitely. Once wave superposition method is applied to sound power calculation, it is necessary to evaluate its accuracy and impact factors. In the paper, the basic principle of wave superposition method is described, and then the integral equation is discretized. Also, the impact factors including element numbers, frequency limitation, and distance between virtual source and integral surface are analyzed in the process of calculate the acoustic radiation from the simply supported thin plate under concentrated force. The extensive measures of acoustic field at the thin plate are compared with results obtain using different numerical methods. The results show that: (a) The agreement between the results from the above numerical methods is excellent. The wave superposition method requires fewer elements and hence is faster. But the extensive numerical modeling suggests that as long as the volume velocity matching yields more than adequate accuracy. (b) The equivalent sources should be collocated inside the radiator. And the accuracy of a given Gauss integration formula will decrease as the source approaches the boundary surface. (c) The numerical method is applicable to the acoustic radiation of structure with complicated shape. (d) The method described in this paper can be used to perform effectively sound power calculation, and its application range can be extended on the basis of these conclusions.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (17) ◽  
pp. 3394-3400 ◽  
Author(s):  
Sameer Deshmukh ◽  
Zbigniew Brzozka ◽  
Thomas Laurell ◽  
Per Augustsson

Flow laminated liquids can relocate in a resonant acoustic field due to differences in density and speed of sound.


2018 ◽  
Vol 26 (02) ◽  
pp. 1850014
Author(s):  
Chongwang Yue ◽  
Xiaopeng Yue

Apart from consolidated rocks, the effect of relaxation on acoustic propagation in unconsolidated sands cannot be neglected. In this paper, we study the influence of relaxation frequency on the propagation of acoustic waves. We compute the frequency-dependent velocities and attenuation of P1-wave, P2-wave, and S-wave at different bulk or shear relaxation frequency for plane wave. In addition, we derive the integral solutions of acoustic field equations in cylindrical coordinate system to simulate acoustic logging. The reflected acoustic waveforms in a borehole are calculated at different bulk or shear relaxation frequency. Calculation results show that the increase of bulk relaxation frequency will cause the velocity of P1-wave to decrease slightly, and the velocity of P2-wave to decrease substantially. The change of bulk relaxation frequency has no effect on the velocity of S-wave. The increase of bulk relaxation frequency will cause the attenuation of P1-wave or P2-wave to decrease or increase in different wave frequency range. The change of bulk relaxation frequency has no effect on the attenuation of S-wave. The increase of shear relaxation frequency will cause the velocity of P1-wave to increase slightly, and the velocity of P2-wave or S-wave to decrease substantially. The increase of the shear relaxation frequency will cause the attenuation of P1-wave, P2-wave or S-wave to decrease. For acoustic field in a borehole surrounded by unconsolidated sands, the effect of bulk or shear relaxation frequency on the velocity of reflected waves in a borehole is negligible at the dimension of the distance from a logging source. The increase of bulk or shear relaxation frequency will cause the amplitude of the reflected waveforms from the borehole wall to increase.


2014 ◽  
Vol 599-601 ◽  
pp. 922-926
Author(s):  
Guo Liang Xu ◽  
Qi Wei He ◽  
Shao Chun Ding ◽  
Hai Bo Wan

To analyze effects of quay environment on the AUV radiated acoustic field test, the PNAH (PNAH: planar near-field acoustical holography) was used to simulate acoustic field. By simulating the free and non-free acoustic field and comparing amplitudes and angles of complex sound pressure, Analyze effects of quay wall and seabed reflection on the AUV radiated acoustic field test to determine the standard of quay wall and seabed environment which meets testing. The work would provide a certain reference for the AUV radiated acoustic field test.


Sign in / Sign up

Export Citation Format

Share Document