Influence of Relaxation Frequency on Acoustic Wave in Unconsolidated Sands and Acoustic Logging Simulation

2018 ◽  
Vol 26 (02) ◽  
pp. 1850014
Author(s):  
Chongwang Yue ◽  
Xiaopeng Yue

Apart from consolidated rocks, the effect of relaxation on acoustic propagation in unconsolidated sands cannot be neglected. In this paper, we study the influence of relaxation frequency on the propagation of acoustic waves. We compute the frequency-dependent velocities and attenuation of P1-wave, P2-wave, and S-wave at different bulk or shear relaxation frequency for plane wave. In addition, we derive the integral solutions of acoustic field equations in cylindrical coordinate system to simulate acoustic logging. The reflected acoustic waveforms in a borehole are calculated at different bulk or shear relaxation frequency. Calculation results show that the increase of bulk relaxation frequency will cause the velocity of P1-wave to decrease slightly, and the velocity of P2-wave to decrease substantially. The change of bulk relaxation frequency has no effect on the velocity of S-wave. The increase of bulk relaxation frequency will cause the attenuation of P1-wave or P2-wave to decrease or increase in different wave frequency range. The change of bulk relaxation frequency has no effect on the attenuation of S-wave. The increase of shear relaxation frequency will cause the velocity of P1-wave to increase slightly, and the velocity of P2-wave or S-wave to decrease substantially. The increase of the shear relaxation frequency will cause the attenuation of P1-wave, P2-wave or S-wave to decrease. For acoustic field in a borehole surrounded by unconsolidated sands, the effect of bulk or shear relaxation frequency on the velocity of reflected waves in a borehole is negligible at the dimension of the distance from a logging source. The increase of bulk or shear relaxation frequency will cause the amplitude of the reflected waveforms from the borehole wall to increase.

2020 ◽  
Vol 8 (3) ◽  
pp. SL103-SL111
Author(s):  
Chongwang Yue ◽  
Zhuwen Wang ◽  
Zhi Yang ◽  
Yu Li

Characterizing acoustic propagation in unconsolidated sand reservoirs is critical in offshore oil and gas exploration. We have simulated the acoustic field in a borehole surrounded by granular media based on nonuniform contact, using a 2nd-order in time and 10th-order in space finite-difference technique. We focus on the impact of the porosity and coordination number, grain size, and grain scale distribution on acoustic logging. Numerical simulation results show that P- and S-wave velocities decrease with increasing the porosity or decreasing the coordination number and increase with increasing the grain size. For different grain size distributed in the vertical and radial directions, the velocity and amplitude of the P-wave and S-wave are different. As reflected waves in a borehole, the arrival wave’s velocity is higher and the amplitude is stronger, whereas grains near the source or borehole axis are larger. The results of this paper provide a reference for analyzing and predicting different graded bedding formations for acoustic logging.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 40
Author(s):  
Marc Röthlisberger ◽  
Marcel Schuck ◽  
Laurenz Kulmer ◽  
Johann W. Kolar

Acoustic levitation forces can be used to manipulate small objects and liquid without mechanical contact or contamination. To use acoustic levitation for contactless robotic grippers, automated insertion of objects into the acoustic pressure field is necessary. This work presents analytical models based on which concepts for the controlled insertion of objects are developed. Two prototypes of acoustic grippers are implemented and used to experimentally verify the lifting of objects into the acoustic field. Using standing acoustic waves and by dynamically adjusting the acoustic power, the lifting of high-density objects (>7 g/cm3) from acoustically transparent surfaces is demonstrated. Moreover, a combination of different acoustic traps is used to lift lower-density objects from acoustically reflective surfaces. The provided results open up new possibilities for the implementation of acoustic levitation in robotic grippers, which have the potential to be used in a variety of industrial applications.


2013 ◽  
Vol 115 (8) ◽  
pp. 1119-1125 ◽  
Author(s):  
Yuki Fujimoto ◽  
Jyongsu Huang ◽  
Toshiharu Fukunaga ◽  
Ryo Kato ◽  
Mari Higashino ◽  
...  

The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


Author(s):  
Xuesong Wu

In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien–Schlichting (T–S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T–S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic ‘twin boundary layers’ that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 924
Author(s):  
Sergey Leble ◽  
Sergey Vereshchagin ◽  
Nataliya V. Bakhmetieva ◽  
Gennadiy I. Grigoriev

The problem of wave identification is formulated as applied to the results of measurements of the temperature and the density of the neutral atmosphere in the range height 90–120 km by the artificial periodic irregularities (APIs) technique. The technique is based on the resonant scattering of radio waves by artificial periodic irregularities of the ionospheric plasma emerging in the field of a standing wave arising from the interference of the incident and reflected waves from the ionosphere. APIs were created using SURA heating facility (named as SURA experiment). The acoustic wave theory is reformulated on the base of data which can be observed in the given experimental setup. The basic system of equations is reduced so that it accounts only upward and downward directed waves, ignoring entropy mode. The algorithm of wave identification based on usage of dynamic projection operators for such a reduced case is proposed and explicit form of projection operators is derived. Its application to finite number dataset via Discrete Fourier Transform (DFT) is described and results of its application to the DFT-transformed set of experimental observation of the temperature and density perturbations are presented. The result yields hybrid amplitudes, that allow us to calculate energy of the directed waves that enter the observed superposition. The problem of entropy mode detection is discussed, the corresponding projecting operators for the full evolution system are built and a way to apply the method to quantification of it is proposed.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ran Bachrach ◽  
Jack Dvorkin ◽  
Amos M. Nur

We determined P- and S-wave velocity depth profiles in shallow, unconsolidated beach sand by analyzing three‐component surface seismic data. P- and S-wave velocity profiles were calculated from traveltime measurements of vertical and tangential component seismograms, respectively. The results reveal two discrepancies between theory and data. Whereas both velocities were found to be proportional to the pressure raised to the power of 1/6, as predicted by the Hertz‐Mindlin contact theory, the actual values of the velocities are less than half of those calculated from this theory. We attribute this discrepancy to the angularity of the sand grains. Assuming that the average radii of curvature at the grain contacts are smaller than the average radii of the grains, we modify the Hertz‐Mindlin theory accordingly. We found that the ratio of the contact radius to the grain radius is about 0.086. The second disparity is between the observed Poisson’s ratio of 0.15 and the theoretical value (0.008 for random pack of quartz spheres). This discrepancy can be reconciled by assuming slip at the grain contacts. Because slip decreases the shearing between grains, Poisson’s ratio increases.


2020 ◽  
Vol 110 (6) ◽  
pp. 2882-2891
Author(s):  
Kosuke Chimoto ◽  
Hiroaki Yamanaka

ABSTRACT The autocorrelation of ambient noise is used to capture reflected waves for crustal and sedimentary structures. We applied autocorrelation to strong-motion records to capture the reflected waves from sedimentary layers and used them for tuning the S-wave velocity structure of these layers. Because a sedimentary-layered structure is complicated and generates many reflected waves, it is important to identify the boundary layer from which the waves reflected. We used spectral whitening during autocorrelation analysis to capture the reflected waves from the seismic bedrock with an appropriate smoothing band, which controls the wave arrival from the desired layer boundary. The effect of whitening was confirmed by the undulation frequency observed in the transfer function of the sedimentary layers. After careful determination of parameters for spectral whitening, we applied data processing to the strong-motion records observed at the stations in the Shimousa region of the Kanto Basin, Japan, to estimate the arrival times of the reflected waves. The arrival times of the reflected waves were found to be fast in the northern part of the Shimousa region and slow in the western and southern parts. These arrival times are consistent with those obtained using existing models. Because we observed a slight difference in the arrival times, the autocorrelation function at each station was used for tuning the S-wave velocity structure model of the sedimentary layers using the inversion technique. The tuned models perfectly match the autocorrelation functions in terms of the arrival time of the reflected waves from the seismic bedrock.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Ningya Cheng ◽  
Chuen Hon Cheng

Field data sets collected by an array monopole acoustic logging tool and a shear wave logging tool are processed and interpreted. The P‐ and S‐wave velocities of the formation are determined by threshold detection with cross‐correlation correction from the full waveform and the shear‐wave log, respectively. The array monopole acoustic logging data are also processed using the extended Prony’s method to estimate the borehole Stoneley wave phase velocity and attenuation as a function of frequency. The well formation between depths of 2950 and 3150 ft (899 and 960 m) can be described as an isotropic elastic medium. The inverted [Formula: see text] from the Stoneley wave phase velocity is in excellent agreement with the shear‐wave log results in this section. The well formation between the depths of 3715 and 3780 ft (1132 and 1152 m) can be described as a porous medium with shear‐wave velocity anisotropy about 10% to 20% and with the symmetry axis perpendicular to the borehole axis. The disagreement between the shear‐wave velocity from the Stoneley wave inversion and the direct shear‐wave log velocity in this section is beyond the errors in the measurements. Estimated permeabilities from low‐frequency Stoneley wave velocity and attenuation data are in good agreement with the core measurements. Also it is proven that the formation permeability is not the cause of the discrepancy. From the estimated “shear/pseudo‐Rayleigh” phase velocities in the array monopole log and the 3-D finite‐difference synthetics in the anisotropic formation, the discrepancy can best be explained as shear‐wave anisotropy.


Sign in / Sign up

Export Citation Format

Share Document