Dynamics of vorticity defects in stratified shear flow

2012 ◽  
Vol 694 ◽  
pp. 292-331 ◽  
Author(s):  
N. J. Balmforth ◽  
A. Roy ◽  
C. P. Caulfield

AbstractWe consider the linear stability and nonlinear evolution of two-dimensional shear flows that take the form of an unstratified plane Couette flow that is seeded with a localized ‘defect’ containing sharp density and vorticity variations. For such flows, matched asymptotic expansions furnish a reduced model that allows a straightforward and computationally efficient exploration of flows at sufficiently high Reynolds and Péclet numbers that sharp density and vorticity gradients persist throughout the onset, growth and saturation of instability. We are thereby able to study the linear and nonlinear dynamics of three canonical variants of stratified shear instability: Kelvin–Helmholtz instability, the Holmboe instability, and the lesser-considered Taylor instability, all of which are often interpreted in terms of the interactions of waves riding on sharp interfaces of density and vorticity. The dynamics near onset is catalogued; if the interfaces are sufficiently sharp, the onset of instability is subcritical, with a nonlinear state existing below the linear instability threshold. Beyond onset, both Holmboe and Taylor instabilities are susceptible to inherently two-dimensional secondary instabilities that lead to wave mergers and wavelength coarsening. Additional two-dimensional secondary instabilities are also found to appear for higher Prandtl numbers that take the form of parasitic Holmboe-like waves.

2012 ◽  
Vol 708 ◽  
pp. 45-70 ◽  
Author(s):  
A. Mashayek ◽  
W. R. Peltier

AbstractThe linear stability analyses described in Mashayek & Peltier (J. Fluid Mech., vol. 708, 2012, 5–44, hereafter MP1) are extended herein in an investigation of the influence of stratification on the evolution of secondary instabilities to which an evolving Kelvin–Helmholtz (KH) wave is susceptible in an initially unstable parallel stratified shear layer. We show that over a wide range of background stratification levels, the braid shear instability has a higher probability of emerging at early stages of the flow evolution while the secondary convective instability (SCI), which occurs in the eyelids of the individual Kelvin ‘cats eyes’, will remain a relevant and dominant instability at high Reynolds numbers. The evolution of both modes is greatly influenced by the background stratification. Various other three-dimensional secondary instabilities are found to exist over a wide range of stratification levels. In particular, the stagnation point instability (SPI), which was discussed in detail in MP1, may be of great potential importance providing alternate routes for transition of an initially two-dimensional KH wave into fully developed turbulence. The energetics of the secondary instabilities revealed by our simulations are analysed in detail and the preturbulent mixing properties are studied.


2012 ◽  
Vol 708 ◽  
pp. 5-44 ◽  
Author(s):  
A. Mashayek ◽  
W. R. Peltier

AbstractWe study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2021 ◽  
Vol 60 (4) ◽  
pp. 513-526
Author(s):  
Bhupendra A. Raut ◽  
Robert Jackson ◽  
Mark Picel ◽  
Scott M. Collis ◽  
Martin Bergemann ◽  
...  

AbstractA robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.


Author(s):  
M. Yasep Setiawan ◽  
Wawan Purwanto ◽  
Wanda Afnison ◽  
Nuzul Hidayat

This study discusses the numerical study of two-dimensional analysis of flow through circular cylinders. The original physical information entered in the equation governing most of the modeling is transferred into a numerical solution. Fluid flow on two-dimensional circular cylinder wall using high Reynolds k-ε modeling (Re = 106), Here we will do 3 modeling first oder upwind, second order upwind and third order MUSCL by using k-ε standard.  The general procedure for this research is formulated in detail for allocations in the dynamic analysis of fluid computing. The results of this study suggest that MUSCL's third order modeling gives more accurate results better than other models.


1997 ◽  
Vol 490 ◽  
Author(s):  
Misha Temkin ◽  
Ivan Chakarov

ABSTRACTA computationally efficient method for ion implantation simulation is presented. The method allows two-dimensional ion implantation profiles in arbitrary shaped structures to be calculated and is valid for both amorphous and crystalline materials. It uses an extension of the one-dimensional dual Pearson approximation into the second dimension.


Sign in / Sign up

Export Citation Format

Share Document