Reduced-order unsteady aerodynamic models at low Reynolds numbers

2013 ◽  
Vol 724 ◽  
pp. 203-233 ◽  
Author(s):  
Steven L. Brunton ◽  
Clarence W. Rowley ◽  
David R. Williams

AbstractIn this paper we develop reduced-order models for the unsteady lift on a pitching and plunging aerofoil over a range of angles of attack. In particular, we analyse the pitching and plunging dynamics for two cases: a two-dimensional flat plate at $\mathit{Re}= 100$ using high-fidelity direct numerical simulations and a three-dimensional NACA 0006 aerofoil at $\mathit{Re}= 65\hspace{0.167em} 000$ using wind-tunnel measurements. Models are obtained at various angles of attack and they are verified against measurements using frequency response plots and large-amplitude manoeuvres. These models provide a low-dimensional balanced representation of the relevant unsteady fluid dynamics. In simulations, flow structures are visualized using finite-time Lyapunov exponents. A number of phenomenological trends are observed, both in the data and in the models. As the base angle of attack increases, the boundary layer begins to separate, resulting in a decreased quasi-steady lift coefficient slope and a delayed relaxation to steady state at low frequencies. This extends the low-frequency range of motions that excite unsteady effects, meaning that the quasi-steady approximation is not valid until lower frequencies than are predicted by Theodorsen’s classical inviscid model. In addition, at small angles of attack, the lift coefficient rises to the steady-state value after a step in angle, while at larger angles of attack, the lift coefficient relaxes down to the steady-state after an initially high lift state. Flow visualization indicates that this coincides with the formation and convection of vortices at the leading edge and trailing edge. As the angle of attack approaches the critical angle for vortex shedding, the poles and zeros of the model approach the imaginary axis in the complex plane, and some zeros cross into the right half plane. This has significant implications for active flow control, which are discussed. These trends are observed in both simulations and wind-tunnel data.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.



Author(s):  
Boris A. Mandadzhiev ◽  
Michael K. Lynch ◽  
Leonardo P. Chamorro ◽  
Aimy A. Wissa

Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. In order for a fixed wing aircraft to maintain the lift necessary for sustained flight at very low speeds and large angles of attack (AoA), the wing shape has to change. This is often achieved by using deployable aerodynamic surfaces, such as flaps or slats, from the wing leading or trailing edges. In nature, one such device is a feathered structure on birds’ wings called the alula. The span of the alula is 5% to 20% of the wing and is attached to the first digit of the wing. The goal of the current study is to understand the aerodynamic effects of the alula on wing performance. A series of wind tunnel experiments are performed to quantify the effect of various alula deployment parameters on the aerodynamic performance of a cambered airfoil (S1223). A full wind tunnel span wing, with a single alula located at the wing mid-span is tested under uniform low-turbulence flow at three Reynolds numbers, Re = 85,000, 106,00 and 146,000. An experimental matrix is developed to find the range of effectiveness of an alula-type device. The alula relative angle of attack measured measured from the mean chord of the airfoil is varied to modulate tip-vortex strength, while the alula deflection is varied to modulate the distance of the tip vortex to the wing surface. Lift and drag forces were measured using a six axis force transducer. The lift and drag coefficients showed the greatest sensitivity to the the alula relative angle of attack, increasing the normalized lift coefficient by as much as 80%. Improvements in lift are strongly correlated to higher alula angle, with β = 0° – 5°, while reduction in the drag coefficient is observed with higher alula tip deflection ratios and lower β angles. Results show that, as the wing angle of attack and Reynolds number are increased, the overall lift co-efficient improvement is diminished while the reduction in drag coefficient is higher.



Author(s):  
AA Mehraban ◽  
MH Djavareshkian

Sinusoidal leading-edge wings have attracted many considerations since they can delay the stall and enhance the maneuverability. The main contribution of this research study is to experimentally investigate effects of ground on aerodynamic performance of sinusoidal leading-edge wings. To this end, 6 tubercled wings with different amplitudes and wavelengths are fabricated and compared with the baseline wing which has smooth leading-edge. Proposed wings are tested in different distances from the ground in a wind tunnel lab for a wide range of angle of attack from 0° to 36° and low Reynolds number of 45,000. Results indicated that lift coefficient is improved when wings get close to the ground. Furthermore, increment of protuberance amplitude in the vicinity of the ground could efficiently prevent stalling particularly for shorter wavelength.



2013 ◽  
Vol 830 ◽  
pp. 17-23
Author(s):  
Yong Wei Gao ◽  
Qi Liang Zhu ◽  
Long Wang

The flow parameters of fluctuating pressure and fluctuating velocity in the gap can be changed by the porous absorption material on the leading edge of upper surface of the flap of multi-element airfoil (GAW-1),and the aerodynamic characteristics is also altered. Experiment was conducted in the NF-3 wind tunnel. It turns out that porous absorption material has a significant effect on fluctuating velocity (i.e. turbulent kinetic energy), and the lift coefficient drops when fluctuating velocity increases ; but the influence on RMS of fluctuating pressure on upper surface is not obvious; the average speed in gap is reduced. The PSD of fluctuating pressure and fluctuating velocity show that low-frequency signal has a more obvious influence on lift of multi-element airfoils than high-frequency.



2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.



Author(s):  
Heiko Körbächer ◽  
Albin Bölcs

An experimental investigation of the steady-state and time-dependent aerodynamic behaviour of a compressor cascade in a ring channel was conducted at the Laboratoire de thermique appliquée et de turbomachines (LTT) at the Swiss Federal Institute of Technology in Lausanne. The cascade consisted of 20 blades with a NACA-3506 profile, stagger angle of 40°, and solidity of 0.72 at midspan. Measurements were done for a number of incidence angles over a small range of inlet Mach numbers between ∼0.75 and ∼0.8 in order to examine the influence of an increasing angle of attack on the steady-state and time-dependent pressures. As the angle of attack increased a growing corner stall was observed at the hub and a supersonic zone appeared at the leading edge. The cascade was vibrated in bending mode with a constant amplitude at a reduced frequency of ∼0.42 at imposed interblade phase angles ranging from 0° to 324°, but also with each blade vibrating in a single blade vibration mode. The unsteady data showed that the cascade was in general damped with the minimum damping between ∼−36° to ∼+36° interblade phase angle for all examined incidence angles. The influence coefficient technique was used to identify the damping influence of each of the blades on itself (eigeninfluence) and of blades up and down the cascade (positive- and negative-sided) for different inlet incidence angles.



2019 ◽  
Vol 11 ◽  
pp. 175682931983368 ◽  
Author(s):  
Yasir A ElAwad ◽  
Eltayeb M ElJack

High-fidelity large eddy simulation is carried out for the flow field around a NACA-0012 aerofoil at Reynolds number of [Formula: see text], Mach number of 0.4, and various angles of attack around the onset of stall. The laminar separation bubble is formed on the suction surface of the aerofoil and is constituted by the reattached shear layer. At these conditions, the laminar separation bubble is unstable and switches between a short bubble and an open bubble. The instability of the laminar separation bubble triggers a low-frequency flow oscillation. The aerodynamic coefficients oscillate accordingly at a low frequency. The lift and the drag coefficients compare very well to recent high-accuracy experimental data, and the lift leads the drag by a phase shift of [Formula: see text]. The mean lift coefficient peaks at the angle of attack of [Formula: see text], in total agreement with the experimental data. The spectra of the lift coefficient does not show a significant low-frequency peak at angles of attack lower than or equal the stall angle of attack ([Formula: see text]). At higher angles of attack, the spectra show two low-frequency peaks and the low-frequency flow oscillation is fully developed at the angle of attack of [Formula: see text]. The behaviour of the flow-field and changes in the turbulent kinetic energy over one low-frequency flow oscillation cycle are described qualitatively.



2014 ◽  
Vol 553 ◽  
pp. 255-260
Author(s):  
Viktor Šajn ◽  
Igor Petrović ◽  
Franc Kosel

In the paper, numerical and experimental study of low Reynolds number airflow around the deformable membrane airfoil (DMA) is presented. Simulations of a fluid-structure interaction between the fluid and the DMA were performed. In the experiment, the DMA model was made from a thin PVC sheet, which was wrapped around the steel rod at the leading and trailing edge. Measurements were performed in a wind tunnel at a chord Reynolds number of 85.7·103, over the angle of attack range from 0° to 15° and DMA shortening ratio from 0.025 to 0.150. Simulations were in an agreement with the experiment, since the average relative difference of coefficient of lift was smaller than 7.3%. For the same value of Reynolds number, DMA shows improved lift coefficient Cy= 2.18, compared to standard rigid airfoils.



1996 ◽  
Vol 118 (4) ◽  
pp. 217-221 ◽  
Author(s):  
D. M. Somers ◽  
J. L. Tangler

The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil’s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 × 106. For the design Reynolds number of 1.5 × 106, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil’s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.



2015 ◽  
Vol 137 (9) ◽  
Author(s):  
V. G. Chapin ◽  
E. Benard

The active control of the leading-edge (LE) separation on the suction surface of a stalled airfoil (NACA 0012) at a Reynolds number of 106 based on the chord length is investigated through a computational study. The actuator is a steady or unsteady jet located on the suction surface of the airfoil. Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations are solved on hybrid meshes with the Spalart–Allmaras turbulence model. Simulations are used to characterize the effects of the steady and unsteady actuation on the separated flows for a large range of angle of attack (0 < α < 28 deg). Parametric studies are carried out in the actuator design-space to investigate the control effectiveness and robustness. An optimal actuator position, angle, and frequency for the stalled angle of attack α = 19 deg are found. A significant increase of the lift coefficient is obtained (+ 84% with respect to the uncontrolled reference flow), and the stall is delayed from angle of attack of 18 deg to more than 25 deg. The physical nonlinear coupling between the actuator position, velocity angle, and frequency is investigated. The critical influence of the actuator location relative to the separation location is emphasized.



Sign in / Sign up

Export Citation Format

Share Document