Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet

2013 ◽  
Vol 726 ◽  
pp. 624-655 ◽  
Author(s):  
Larry K. B. Li ◽  
Matthew P. Juniper

AbstractThe ability of hydrodynamically self-excited jets to lock into strong external forcing is well known. Their dynamics before lock-in and the specific bifurcations through which they lock in, however, are less well known. In this experimental study, we acoustically force a low-density jet around its natural global frequency. We examine its response leading up to lock-in and compare this to that of a forced van der Pol oscillator. We find that, when forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear transitions: (i) from periodicity to ${ \mathbb{T} }^{2} $ quasiperiodicity via a torus-birth bifurcation; and then (ii) from ${ \mathbb{T} }^{2} $ quasiperiodicity to 1:1 lock-in via either a saddle-node bifurcation with frequency pulling, if the forcing and natural frequencies are close together, or a torus-death bifurcation without frequency pulling, but with a gradual suppression of the natural mode, if the two frequencies are far apart. We also find that the jet locks in most readily when forced close to its natural frequency, but that the details contain two asymmetries: the jet (i) locks in more readily and (ii) oscillates more strongly when it is forced below its natural frequency than when it is forced above it. Except for the second asymmetry, all of these transitions, bifurcations and dynamics are accurately reproduced by the forced van der Pol oscillator. This shows that this complex (infinite-dimensional) forced self-excited jet can be modelled reasonably well as a simple (three-dimensional) forced self-excited oscillator. This result adds to the growing evidence that open self-excited flows behave essentially like low-dimensional nonlinear dynamical systems. It also strengthens the universality of such flows, raising the possibility that more of them, including some industrially relevant flames, can be similarly modelled.

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1960
Author(s):  
Federico Zadra ◽  
Alessandro Bravetti ◽  
Marcello Seri

Starting from a contact Hamiltonian description of Liénard systems, we introduce a new family of explicit geometric integrators for these nonlinear dynamical systems. Focusing on the paradigmatic example of the van der Pol oscillator, we demonstrate that these integrators are particularly stable and preserve the qualitative features of the dynamics, even for relatively large values of the time step and in the stiff regime.


2013 ◽  
Vol 735 ◽  
Author(s):  
Larry K. B. Li ◽  
Matthew P. Juniper

AbstractIn a recent study on a coupled laser system, Thévenin et al. (Phys. Rev. Lett., vol. 107, 2011, 104101) reported the first experimental evidence of phase trapping, a partially synchronous state characterized by frequency locking without phase locking. To determine whether this state can arise in a hydrodynamic system, we reanalyse the data from our recent experiment on a periodically forced self-excited low-density jet (J. Fluid Mech., vol. 726, 2013, pp. 624–655). We find that this jet exhibits the full range of phase dynamics predicted by model oscillators with weak nonlinearity. These dynamics include (i) phase trapping between phase drifting and phase locking when the jet is forced far from its natural frequency and (ii) phase slipping during phase drifting when it is forced close to its natural frequency. This raises the possibility that similar phase dynamics can be found in other similarly self-excited flows. It also strengthens the validity of using low-dimensional nonlinear dynamical systems based on a universal amplitude equation to model such flows, many of which are of industrial importance.


2005 ◽  
Vol 15 (10) ◽  
pp. 3165-3180 ◽  
Author(s):  
R. GENESIO ◽  
C. GHILARDI

The paper considers the existence of quasi-periodic solutions in three-dimensional systems. Since these solutions commonly arise as a consequence of a Neimark–Sacker bifurcation of a limit cycle, a fairly general relation connected to this phenomenon is pointed out as the main result of the paper. Then, the application of harmonic balance techniques makes possible to exploit such a relation. In particular, a simplified condition denoting the quasi-periodicity onset can be derived, in making evident the main elements for this transition in terms of structure and parameters, and hence some remarks on the features of the interested systems. Several examples show the application of the above condition to detect "tori" in the state space in a qualitative (not simply numerical) way. They consider classical systems — Rössler, where such behavior seems to be unknown, Chua, forced Van der Pol — and new quadratic systems.


1993 ◽  
Vol 03 (02) ◽  
pp. 399-404 ◽  
Author(s):  
T. SÜNNER ◽  
H. SAUERMANN

Nonlinear self-excited oscillations are usually investigated for two-dimensional models. We extend the simplest and best known of these models, the van der Pol oscillator, to a three-dimensional one and study its dynamical behaviour by methods of bifurcation analysis. We find cusps and other local codimension 2 bifurcations. A homoclinic (i.e. global) bifurcation plays an important role in the bifurcation diagram. Finally it is demonstrated that chaos sets in. Thus the system belongs to the few three-dimensional autonomous ones modelling physical situations which lead to chaotic behavior.


2009 ◽  
Vol 19 (09) ◽  
pp. 2823-2869 ◽  
Author(s):  
Z. E. MUSIELAK ◽  
D. E. MUSIELAK

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.


Author(s):  
Zhe Bai ◽  
Liqian Peng

AbstractAlthough projection-based reduced-order models (ROMs) for parameterized nonlinear dynamical systems have demonstrated exciting results across a range of applications, their broad adoption has been limited by their intrusivity: implementing such a reduced-order model typically requires significant modifications to the underlying simulation code. To address this, we propose a method that enables traditionally intrusive reduced-order models to be accurately approximated in a non-intrusive manner. Specifically, the approach approximates the low-dimensional operators associated with projection-based reduced-order models (ROMs) using modern machine-learning regression techniques. The only requirement of the simulation code is the ability to export the velocity given the state and parameters; this functionality is used to train the approximated low-dimensional operators. In addition to enabling nonintrusivity, we demonstrate that the approach also leads to very low computational complexity, achieving up to $$10^3{\times }$$ 10 3 × in run time. We demonstrate the effectiveness of the proposed technique on two types of PDEs. The domain of applications include both parabolic and hyperbolic PDEs, regardless of the dimension of full-order models (FOMs).


2001 ◽  
Author(s):  
Dexin Li ◽  
Jianxue Xu

Abstract In this paper, a generalized shooting/arc-length method for determining periodic orbit and its period of nonlinear dynamical system is presented. At first, by changing the time scale the period value of periodic orbit of the nonlinear system is drawn into the governing equation of this system. Then, by using the period value as a parameter, the shooting/arc-length procedure is taken for seeking such a periodic solution and its period simultaneously. The value of increment changed in iteration procedure is selected by using optimization method. The procedure involves the detennining of periodic orbit and its period value of the system. Thereby, the periodic orbit and period value of the system can be sought out rapidly and precisely. At last, the validity of such method is verified by determining the periodic orbit and period value for van der pol equation and nonlinear rotor-bear system.


2021 ◽  
Author(s):  
Alain Brizard ◽  
Samuel Berry

Abstract The asymptotic limit-cycle analysis of mathematical models for oscillating chemical reactions is presented. In this work, after a brief presentation of mathematical preliminaries applied to the biased Van der Pol oscillator, we consider a two-dimensional model of the Chlorine dioxide Iodine Malonic-Acid (CIMA) reactions and the three-dimensional and two-dimensional Oregonator models of the Belousov-Zhabotinsky (BZ) reactions. Explicit analytical expressions are given for the relaxation-oscillation periods of these chemical reactions that are accurate within 5% of their numerical values. In the two-dimensional CIMA and Oregonator models, we also derive critical parameter values leading to canard explosions and implosions in their associated limit cycles.


2017 ◽  
Vol 27 (07) ◽  
pp. 1750102
Author(s):  
Marcelo Messias ◽  
Anderson L. Maciel

We study a van der Pol-like memristor oscillator, obtained by substituting a Chua’s diode with an active controlled memristor in a van der Pol oscillator with Chua’s diode. The mathematical model for the studied circuit is given by a three-dimensional piecewise linear system of ordinary differential equations, depending on five parameters. We show that this system has a line of equilibria given by the [Formula: see text]-axis and the phase space [Formula: see text] is foliated by invariant planes transverse to this line, which implies that the dynamics is essentially two-dimensional. We also show that in each of these invariant planes may occur limit cycles and relaxation oscillations (that is, nonsinusoidal repetitive (periodic) solutions), depending on the parameter values. Hence, the oscillator studied here, constructed with a memristor, is also a relaxation oscillator, as the original van der Pol oscillator, although with a main difference: in the case of the memristor oscillator, an infinity of oscillations are produced, one in each invariant plane, depending on the initial condition considered. We also give conditions for the nonexistence of oscillations, depending on the position of the invariant planes in the phase space.


2012 ◽  
Vol 252 ◽  
pp. 40-43
Author(s):  
Ting Ting Quan ◽  
Jing Li ◽  
Min Sun

In this paper, we investigate a class of three dimensional nonlinear dynamical systems whose unperturbed systems have a family of periodic orbits. Firstly, we establish the moving Frenet Frame on these closed orbits. Secondly, the successor functions are defined by the orbits which go through the normal plane. Finally, by judging the existence of solutions of the equations obtained from the Successor functions, we obtain the necessary condition for the existence of periodic solutions of these three dimensional nonlinear dynamical systems. The result has important significance for the basic research of applied mechanics.


Sign in / Sign up

Export Citation Format

Share Document