scholarly journals Levitation of a drop over a moving surface

2013 ◽  
Vol 733 ◽  
Author(s):  
Henri Lhuissier ◽  
Yoshiyuki Tagawa ◽  
Tuan Tran ◽  
Chao Sun

AbstractWe investigate the levitation of a drop gently deposited onto the inner wall of a rotating hollow cylinder. For a sufficiently large velocity of the wall, the drop steadily levitates over a thin air film and reaches a stable angular position in the cylinder, where the drag and lift balance the weight of the drop. Interferometric measurements yield the three-dimensional (3D) air film thickness under the drop and reveal the asymmetry of the profile along the direction of the wall motion. A two-dimensional (2D) model is presented which explains the levitation mechanism, captures the main characteristics of the air film shape and predicts two asymptotic regimes for the film thickness ${h}_{0} $: for large drops ${h}_{0} \sim {\mathit{Ca}}^{2/ 3} { \kappa }_{b}^{- 1} $, as in the Bretherton problem, where $\mathit{Ca}$ is the capillary number based on the air viscosity and ${\kappa }_{b} $ is the curvature at the bottom of the drop; for small drops ${h}_{0} \sim {\mathit{Ca}}^{4/ 5} {(a{\kappa }_{b} )}^{4/ 5} { \kappa }_{b}^{- 1} $, where $a$ is the capillary length.

2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


1994 ◽  
Vol 72 (3) ◽  
pp. 1171-1180 ◽  
Author(s):  
J. Hore ◽  
S. Watts ◽  
D. Tweed

1. Overarm throwing is a skilled multijoint movement with potentially many degrees of freedom. Considering only the arm > or = 7 degrees of freedom are involved (shoulder 3, elbow 2, wrist 2). For each arm segment 3 degrees of freedom are potentially required to specify its angular position (orientation) at any moment during a throw. Simplification of the control problem for the CNS would occur if there were constraints on these degrees of freedom. The objective was to determine whether such constraints exist at ball release when throwing at targets in different directions using only the arm. 2. The angular positions in three dimensions of the distal phalanx of the middle finger, the hand, the forearm, and the upper arm were simultaneously recorded with search coils as subjects sat with a fixed trunk and threw balls at nine targets in an approximate +/- 40 degree work space. Ball release was signaled by microswitches on the proximal and distal phalanges of the middle finger (proximal and distal triggers). 3. On throwing at any one target the hand at ball release adopted a similar orientation for each throw, i.e., for a particular vertical and horizontal angular position the hand adopted a similar torsional position. On throwing at targets throughout the work space, angular position (rotation) vectors describing hand positions in space at ball release were confined to a two-dimensional surface rather than a three-dimensional volume. This constraint in hand torsion occurred near and at ball release but not throughout the entire throw. It was not due to mechanical factors because such a surface was not obtained when subjects deliberately twisted their arms when throwing. Thus at ball release during a "natural" throw the hand was constrained to 2 of its possible 3 angular degrees of freedom. 4. The same constraint was also found for finger, forearm, and upper arm angular positions in space at ball release as determined at both the proximal and distal triggers. A consequence is that at ball release the entire arm was constrained to 2 of its possible 7 degrees of freedom. 5. The two-dimensional position vector surface for each arm segment was similar to that obtained when pointing with a straight arm at the same targets. In both cases they showed torsion and were twisted like the surface obtained by rotations around the horizontal and vertical axes of a Fick gimbal. However, in some subjects the throwing surfaces were tilted from the vertical.(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 631 ◽  
pp. 65-102 ◽  
Author(s):  
E. GONZALEZ-JUEZ ◽  
E. MEIBURG ◽  
G. CONSTANTINESCU

The unsteady drag and lift generated by the interaction of a gravity current with a bottom-mounted square cylinder are investigated by means of high-resolution Navier–Stokes simulations. Two-dimensional simulations for Reynolds numbers (Re) O(1000) and three-dimensional simulations for Re = O(10000) demonstrate that the drag coefficient increases exponentially towards a maximum as the current meets the cylinder, then undergoes strong fluctuations and eventually approaches a quasi-steady value. The simulation results show that the maximum drag coefficient can reach a value of 3, with the quasi-steady value being O(1), which should aid in selecting a design drag coefficient for submarine structures under the potential impact of gravity currents. The transient drag and lift fluctuations after impact are associated with the Kelvin–Helmholtz vortices in the mixing layer between the gravity current and the ambient fluid. As these vortices pass over the cylinder, they cause the convection of separated flow regions along the bottom wall towards the cylinder. In two-dimensional simulations at Re = O(10000), these flow structures are seen to be unrealistically coherent and to persist throughout the interaction, thus resulting in a noticeable overprediction of the drag and lift fluctuations. On the other hand, the impact of the current on the cylinder is seen to be very well captured by two-dimensional simulations at all Re values. Three-dimensional simulations lead to excellent agreement with available experimental data throughout the flow/structure interaction. They show that the spanwise variation of the drag is determined by the gravity current's lobe-and-cleft structure at impact and by an unsteady cellular flow structure similar to that found in constant-density flows at later times. A comparison between gravity-current flows and corresponding constant-density flows shows the hydrostatic drag component to be important for gravity currents.


1992 ◽  
Vol 68 (1) ◽  
pp. 309-318 ◽  
Author(s):  
B. Glenn ◽  
T. Vilis

1. Kinematic constraints were examined in static eye and head positions after large gaze shifts to visual targets. Three-dimensional eye and head rotations were measured in six adult human subjects by the use of the magnetic field search coil technique. 2. Eye positions in space were found to obey Donder's law; i.e., for any given gaze direction there was a unique three-dimensional orientation. In other words, angular eye positions in space (expressed as quaternions) were constrained to a two-dimensional surface. 3. When only the eye moved (head stationary), the shape of this surface resembled a plane and thus the eye position in space obeyed Listing's law. However, after gaze shifts involving both the eye and the head, the eye in space surface became twisted and thus nonplanar. This twist was similar to that achieved by a Fick gimbal model of rotations in which the horizontal axis is nested within a fixed vertical axis. During oblique gaze shifts, the head made predominantly horizontal movements whereas the eye made predominantly vertical movements. This, combined with the fact that the eye is mounted within the head, causes the eye in space surface to resemble that of a Fick gimbal. 4. The angular position of the head in space was also constrained to a two-dimensional surface. This surface was also not planar (Listinglike) and twisted in a manner similar to that of the eye in space. 5. Whereas the angular position of the eye in head was found to obey Listing's law after head-fixed gaze shifts, violations of Listing's law occurred after head-free gaze shifts. These violations showed significant intersubject variation in their magnitude and character. 6. Given that the eye in space violates Listing's law after head movements, the supposition that Listing's law serves the perceptual purpose of maintaining radial constancy is untenable. The Fick gimballike behavior of the head in space and eye in space may hold several advantages over a Listing's system. When the head in space behaves like a Fick gimbal, a horizontal line through the eyes remains parallel to the horizon. By having the eye in space behave like a Fick gimbal, the work done against gravity may be minimized by having the eye contribute more to vertical gaze shifts than does the head.


2009 ◽  
Vol 22 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Leopoldo Pérez de Isla ◽  
David Vivas Balcones ◽  
Covadonga Fernández-Golfín ◽  
Pedro Marcos-Alberca ◽  
Carlos Almería ◽  
...  

1990 ◽  
Vol 202 ◽  
Author(s):  
H. J. Frost

ABSTRACTThis paper will review the topic of computer simulation of the evolution of grain structure in polycrystalline thin films, with particular attention to the modelling of the grain growth process. If the grain size is small compared to the film thickness, then the grain structure is three-dimensional. As the grains grow to become larger than the film thickness, so that most grains traverse the entire thickness of the film, the microstructure may approach the conditions for a two-dimensional grain structure. Both two- and three-dimensional grain growth have been simulated by various authors.When the grains become large enough for the microstructure to be two-dimensional, the surface energy associated with the two free surfaces of the film becomes comparable to the surface energy of the grain boundaries. In this condition, the free surface may profoundly effect the grain growth. One effect is that grooves may develop along the lines where the grain boundaries meet the free surfaces. This grooving may pin the boundaries against further migration and lead to grain-growth stagnation. Another possible effect is that differences in the free surface energy for grains with different crystallographic orientation may provide a driving force for the migration of the boundaries which is additional to that provided by grain boundary capillarity. Grains with favorable orientations will grow at the expense of grains with unfavorable orientations. The coupling of grain-growth stagnation with an additional driving force can produce abnormal or secondary grain growth in which a few grains grow very large by consuming the normal grains.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Sign in / Sign up

Export Citation Format

Share Document