scholarly journals The Loop Current: Observations of Deep Eddies and Topographic Waves

2019 ◽  
Vol 49 (6) ◽  
pp. 1463-1483 ◽  
Author(s):  
Peter Hamilton ◽  
Amy Bower ◽  
Heather Furey ◽  
Robert Leben ◽  
Paula Pérez-Brunius

AbstractA set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had >40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.

2008 ◽  
Vol 38 (7) ◽  
pp. 1426-1449 ◽  
Author(s):  
L-Y. Oey

Abstract In contrast to the Loop Current and rings, much less is known about deep eddies (deeper than 1000 m) of the Gulf of Mexico. In this paper, results from a high-resolution numerical model of the Gulf are analyzed to explain their origin and how they excite topographic Rossby waves (TRWs) that disperse energy to the northern slopes of the Gulf. It is shown that north of Campeche Bank is a fertile ground for the growth of deep cyclones by baroclinic instability of the Loop Current. The cyclones have horizontal (vertical) scales of about 100 km (1000∼2000 m) and swirl speeds ∼0.3 m s−1. The subsequent development of these cyclones consists of two modes, A and B. Mode-A cyclones evolve into the relatively well-known frontal eddies that propagate around the Loop Current. Mode-A cyclone can amplify off the west Florida slope and cause the Loop Current to develop a “neck” that sometimes leads to shedding of a ring; this process is shown to be the Loop Current’s dominant mode of upper-to-deep variability. Mode-B cyclones are “shed” and propagate west-northwestward at speeds of about 2–6 km day−1, often in concert with an expanding loop or a migrating ring. TRWs are produced through wave–eddy coupling originating primarily from the cyclone birthplace as well as from the mode-B cyclones, and second, but for longer periods of 20∼30 days only, also from the mode-A frontal eddies. The waves are “channeled” onto the northern slope by a deep ridge located over the lower slope. For very short periods (≲10 days), the forcing is a short distance to the south, which suggests that the TRWs are locally forced by features that have intruded upslope and that most likely have accompanied the Loop Current or a ring.


2014 ◽  
Vol 740 ◽  
pp. 97-113 ◽  
Author(s):  
Joseph J. Kuehl ◽  
V. A. Sheremet

AbstractThe problem of oceanic gap-traversing boundary currents, such as the Kuroshio current crossing the Luzon Strait or the Gulf Stream traversing the mouth of the Gulf of Mexico, is considered. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. Sheremet (J. Phys. Oceanogr., vol. 31, 2001, pp. 1247–1259) proposed, based on idealized barotropic numerical results, that variation in the current’s inertia is responsible for these transitions and that the system admits multiple states. Generalized versions of these results have been confirmed by barotropic rotating-table experiments (Sheremet & Kuehl, J. Phys. Oceanogr., vol. 37, 2007, 1488–1495; Kuehl & Sheremet,J. Mar. Res., vol. 67, 2009, pp. 25–42). However, the typical structure of oceanic boundary currents, such as the Gulf Stream or Kuroshio, consists of an upper-layer intensified flow riding atop a weakly circulating lower layer. To more accurately address this oceanic situation, the present work extends the above findings by considering two-layer rotating table experiments. The flow is driven by pumping water through sponges and vertical seals, creating a Sverdrup interior circulation in the upper layer which impinges on a ridge where a boundary current is formed. The $\beta $ effect is incorporated in both layers by a sloping rigid lid as well as a sloping bottom and the flow is visualized with the particle image velocimetry method. The experimental set-up is found to produce boundary currents consistent with theory. The existence of multiple states and hysteresis, characterized by a cusp topology of solutions, is found to be robust to stratification and various properties of the two-layer system are explored.


Author(s):  
QI QUAN ◽  
ZHONGYA CAI ◽  
GUANGZHEN JIN ◽  
ZHIQIANG LIU

AbstractTopographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.


2007 ◽  
Vol 37 (3) ◽  
pp. 708-726 ◽  
Author(s):  
Peter Hamilton

Abstract Observations of deep currents, from a closely spaced array deployed at the base of the Sigsbee Escarpment, south of the Mississippi Delta, are dominated by energetic, short-period (∼10 days) topographic Rossby waves. Over a 2-yr interval, distinct trains of waves occurred, with differing characteristic periods, wavelengths, and horizontal energy distribution, usually initiated with a burst of large-amplitude current fluctuations that slowly decay over the next 2–3 months. Two of the wave trains were associated with the shedding and westward passage of major Loop Current anticyclones; however, one event occurred when upper-layer currents were quiescent. This latter wave train showed that bottom-trapped topographic wave motions can be traced to within 300 m of the surface in a 2000-m water column. Ray tracing showed that a likely source region of the short-period waves was the west side of an extended Loop Current. The data and ray paths suggest that, through refraction and reflection, the steep escarpment keeps the energetic waves confined to the deep water. These mechanisms help to explain why short-period fluctuations are not observed farther west in the central and western gulf basin.


2021 ◽  
Author(s):  
Georgi Sutyrin ◽  
Jonas Nycander ◽  
Timour Radko

<p>Baroclinic vortices embedded in a large-scale vertical shear are examined. We describe a new class of steady propagating vortices that radiate Rossby waves but yet do not decay. This is possible since they can extract available potential energy (APE) from a large-scale vertically sheared flow, even though this flow is linearly stable. The vortices generate Rossby waves which induce a meridional vortex drift and an associated heat flux explained by an analysis of pseudomomentum and pseudoenergy. An analytical steady solution is considered for a marginally stable flow in a two-layer model on the beta-plane, where the beta-effect is compensated by the potential vorticity gradient (PVG) associated with the meridional slope of the density interface. The compensation occurs in the upper layer for an upper layer westward flow (an easterly shear) and in the lower layer for an upper layer eastward flow (the westerly shear). The theory is confirmed by numerical simulations indicating that for westward flows in subtropical oceans, the reduced PVG in the upper layer provides favorable conditions for eddy persistence and long-range propagation. The drifting and radiating vortex is an alternative mechanism besides baroclinic instability for converting background APE to mesoscale energy. </p>


2018 ◽  
Vol 48 (3) ◽  
pp. 511-529 ◽  
Author(s):  
Paula Pérez-Brunius ◽  
Heather Furey ◽  
Amy Bower ◽  
Peter Hamilton ◽  
Julio Candela ◽  
...  

AbstractThe large-scale circulation of the bottom layer of the Gulf of Mexico is analyzed, with special attention to the historically least studied western basin. The analysis is based on 4 years of data collected by 158 subsurface floats parked at 1500 and 2500 m and is complemented with data collected by current meter moorings in the western basin during the same period. Three main circulation patterns stand out: a cyclonic boundary current, a cyclonic gyre in the abyssal plain, and the very high eddy kinetic energy observed in the eastern Gulf. The boundary current and the cyclonic gyre appear as distinct features, which interact in the western tip of the Yucatan shelf. The persistence and continuity of the boundary current is addressed. Although high variability is observed, the boundary flow serves as a pathway for water to travel around the western basin in approximately 2 years. An interesting discovery is the separation of the boundary current over the northwestern slope of the Yucatan shelf. The separation and retroflection of the along-slope current appears to be a persistent feature and is associated with anticyclonic eddies whose genesis mechanism remains to be understood. As the boundary flow separates, it feeds into the westward flow of the deep cyclonic gyre. The location of this gyre—named the Sigsbee Abyssal Gyre—coincides with closed geostrophic contours, so eddy–topography interaction via bottom form stresses may drive this mean flow. The contribution to the cyclonic vorticity of the gyre by modons traveling under Loop Current eddies is discussed.


2016 ◽  
Vol 46 (4) ◽  
pp. 1231-1254 ◽  
Author(s):  
Wilken-Jon von Appen ◽  
Ursula Schauer ◽  
Tore Hattermann ◽  
Agnieszka Beszczynska-Möller

AbstractThe West Spitsbergen Current (WSC) is a topographically steered boundary current that transports warm Atlantic Water northward in Fram Strait. The 16 yr (1997–2012) current and temperature–salinity measurements from moorings in the WSC at 78°50′N reveal the dynamics of mesoscale variability in the WSC and the central Fram Strait. A strong seasonality of the fluctuations and the proposed driving mechanisms is described. In winter, water is advected in the WSC that has been subjected to strong atmospheric cooling in the Nordic Seas, and as a result the stratification in the top 250 m is weak. The current is also stronger than in summer and has a greater vertical shear. This results in an e-folding growth period for baroclinic instabilities of about half a day in winter, indicating that the current has the ability to rapidly grow unstable and form eddies. In summer, the WSC is significantly less unstable with an e-folding growth period of 2 days. Observations of the eddy kinetic energy (EKE) show a peak in the boundary current in January–February when it is most unstable. Eddies are then likely advected westward, and the EKE peak is observed 1–2 months later in the central Fram Strait. Conversely, the EKE in the WSC as well as in the central Fram Strait is reduced by a factor of more than 3 in late summer. Parameterizations for the expected EKE resulting from baroclinic instability can account for the observed EKE values. Hence, mesoscale instability can generate the observed variability, and high-frequency wind forcing is not required to explain the observed EKE.


2014 ◽  
Vol 44 (7) ◽  
pp. 1919-1940 ◽  
Author(s):  
T. Radko ◽  
D. Peixoto de Carvalho ◽  
J. Flanagan

Abstract A theoretical model is developed, which attempts to predict the lateral transport by mesoscale variability, generated and maintained by baroclinic instability of large-scale flows. The authors are particularly concerned by the role of secondary instabilities of primary baroclinically unstable modes in the saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for evaluating the equilibrium magnitude of mesoscale eddies as a function of the background parameters: vertical shear, stratification, beta effect, and bottom drag. The proposed technique is applied to two classical models of baroclinic instability—the Phillips two-layer model and the linearly stratified Eady model. Theory predicts that the eddy-driven lateral mixing rapidly intensifies with increasing shear and weakens when the beta effect is increased. The eddy transport is also sensitive to the stratification pattern, decreasing as the ratio of upper/lower layer depths in the Phillips model is decreased below unity. Theory is successfully tested by a series of direct numerical simulations that span a wide parameter range relevant for typical large-scale currents in the ocean. The spontaneous emergence of large-scale patterns induced by mesoscale variability, and their role in the cross-flow eddy transport, is examined using a suite of numerical simulations.


2021 ◽  
pp. 001139212110246
Author(s):  
Walid Habbas ◽  
Yael Berda

This article delves into the everyday dynamics of colonial rule to outline a novel way of understanding colonized–colonizer interactions. It conceives colonial management as a social field in which both the colonized and colonizers negotiate and exchange resources, despite their decidedly unequal positions within a racial hierarchy. Drawing their example from the West Bank, the authors argue that a Palestinian economic elite has proactively participated in the co-production of the colonial management of spatial mobility, a central component of Israeli colonial rule. The study employs interviews and document analysis to investigate how the nexus between Palestine’s commercial-logistical needs and Israel’s security complex induced large-scale Palestinian producers to exert agency and reorder commercial mobility. The authors describe and explain the evolution of a ‘Door-to-Door’ logistical arrangement, in which large-scale Palestinian traders participate in extending Israeli’s system of spatial control in exchange for facilitating logistical mobility. This horizontal social encounter that entails pay-offs is conditioned, but not fully determined, by vertical relations of domination and subordination.


2012 ◽  
Vol 42 (1) ◽  
pp. 18-38 ◽  
Author(s):  
G. Roullet ◽  
J. C. McWilliams ◽  
X. Capet ◽  
M. J. Molemaker

Abstract High-resolution simulations of β-channel, zonal-jet, baroclinic turbulence with a three-dimensional quasigeostrophic (QG) model including surface potential vorticity (PV) are analyzed with emphasis on the competing role of interior and surface PV (associated with isopycnal outcropping). Two distinct regimes are considered: a Phillips case, where the PV gradient changes sign twice in the interior, and a Charney case, where the PV gradient changes sign in the interior and at the surface. The Phillips case is typical of the simplified turbulence test beds that have been widely used to investigate the effect of ocean eddies on ocean tracer distribution and fluxes. The Charney case shares many similarities with recent high-resolution primitive equation simulations. The main difference between the two regimes is indeed an energization of submesoscale turbulence near the surface. The energy cycle is analyzed in the (k, z) plane, where k is the horizontal wavenumber. In the two regimes, the large-scale buoyancy forcing is the primary source of mechanical energy. It sustains an energy cycle in which baroclinic instability converts more available potential energy (APE) to kinetic energy (KE) than the APE directly injected by the forcing. This is due to a conversion of KE to APE at the scale of arrest. All the KE is dissipated at the bottom at large scales, in the limit of infinite resolution and despite the submesoscales energizing in the Charney case. The eddy PV flux is largest at the scale of arrest in both cases. The eddy diffusivity is very smooth but highly nonuniform. The eddy-induced circulation acts to flatten the mean isopycnals in both cases.


Sign in / Sign up

Export Citation Format

Share Document