scholarly journals Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence

2014 ◽  
Vol 743 ◽  
Author(s):  
Rui Ni ◽  
Nicholas T. Ouellette ◽  
Greg A. Voth

AbstractStretching in continuum mechanics is naturally described using the Cauchy–Green strain tensors. These tensors quantify the Lagrangian stretching experienced by a material element, and provide a powerful way to study processes in turbulent fluid flows that involve stretching such as vortex stretching and alignment of anisotropic particles. Analysing data from a simulation of isotropic turbulence, we observe preferential alignment between rods and vorticity. We show that this alignment arises because both of these quantities independently tend to align with the strongest Lagrangian stretching direction, as defined by the maximum eigenvector of the left Cauchy–Green strain tensor. In particular, rods approach almost perfect alignment with the strongest stretching direction. The alignment of vorticity with stretching is weaker, but still much stronger than previously observed alignment of vorticity with the eigenvectors of the Eulerian strain rate tensor. The alignment of strong vorticity is almost the same as that of rods that have experienced the same stretching.

2021 ◽  
Vol 929 ◽  
Author(s):  
Alberto Vela-Martín ◽  
Marc Avila

Drop deformation in fluid flows is investigated as an exchange between the kinetic energy of the fluid and the surface energy of the drop. We show analytically that this energetic exchange is controlled only by the stretching (or compression) of the drop surface by the rate-of-strain tensor. This mechanism is analogous to the stretching of the vorticity field in turbulence. By leveraging the non-local nature of turbulence dynamics, we introduce a new decomposition that isolates the energetic exchange arising from local drop-induced surface effects from the non-local action of turbulent fluctuations. We perform direct numerical simulations of single inertial drops in isotropic turbulence and show that an important contribution to the increments of the surface energy arises from the non-local stretching of the fluid–fluid interface by eddies far from the drop surface (outer eddies). We report that this mechanism is dominant and independent of surface dynamics in a range of Weber numbers in which drop breakup occurs. These findings shed new light on drop deformation and breakup in turbulent flows, and opens the possibility for the improvement and simplification of breakup models.


Author(s):  
Daniel Karrasch ◽  
Florian Huhn ◽  
George Haller

Coherent boundaries of Lagrangian vortices in fluid flows have recently been identified as closed orbits of line fields associated with the Cauchy–Green strain tensor. Here, we develop a fully automated procedure for the detection of such closed orbits in large-scale velocity datasets. We illustrate the power of our method on ocean surface velocities derived from satellite altimetry.


2018 ◽  
Vol 860 ◽  
pp. 465-486 ◽  
Author(s):  
Nimish Pujara ◽  
Greg A. Voth ◽  
Evan A. Variano

We examine the dynamics of slender, rigid rods in direct numerical simulation of isotropic turbulence. The focus is on the statistics of three quantities and how they vary as rod length increases from the dissipation range to the inertial range. These quantities are (i) the steady-state rod alignment with respect to the perceived velocity gradients in the surrounding flow, (ii) the rate of rod reorientation (tumbling) and (iii) the rate at which the rod end points move apart (stretching). Under the approximations of slender-body theory, the rod inertia is neglected and rods are modelled as passive particles in the flow that do not affect the fluid velocity field. We find that the average rod alignment changes qualitatively as rod length increases from the dissipation range to the inertial range. While rods in the dissipation range align most strongly with fluid vorticity, rods in the inertial range align most strongly with the most extensional eigenvector of the perceived strain-rate tensor. For rods in the inertial range, we find that the variance of rod stretching and the variance of rod tumbling both scale as $l^{-4/3}$, where $l$ is the rod length. However, when rod dynamics are compared to two-point fluid velocity statistics (structure functions), we see non-monotonic behaviour in the variance of rod tumbling due to the influence of small-scale fluid motions. Additionally, we find that the skewness of rod stretching does not show scale invariance in the inertial range, in contrast to the skewness of longitudinal fluid velocity increments as predicted by Kolmogorov’s $4/5$ law. Finally, we examine the power-law scaling exponents of higher-order moments of rod tumbling and rod stretching for rods with lengths in the inertial range and find that they show anomalous scaling. We compare these scaling exponents to predictions from Kolmogorov’s refined similarity hypotheses.


2018 ◽  
Vol 858 ◽  
pp. 407-436 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Jacques Magnaudet ◽  
Alessandro Bottaro

A macroscopic boundary condition to be used when a fluid flows over a rough surface is derived. It provides the slip velocity $\boldsymbol{u}_{S}$ on an equivalent (smooth) surface in the form $\boldsymbol{u}_{S}=\unicode[STIX]{x1D716}{\mathcal{L}}\boldsymbol{ : }{\mathcal{E}}$, where the dimensionless parameter $\unicode[STIX]{x1D716}$ is a measure of the roughness amplitude, ${\mathcal{E}}$ denotes the strain-rate tensor associated with the outer flow in the vicinity of the surface and ${\mathcal{L}}$ is a third-order slip tensor arising from the microscopic geometry characterizing the rough surface. This boundary condition represents the tensorial generalization of the classical Navier slip condition. We derive this condition, in the limit of small microscopic Reynolds numbers, using a multi-scale technique that yields a closed system of equations, the solution of which allows the slip tensor to be univocally calculated, once the roughness geometry is specified. We validate this generalized slip condition by considering the flow about a rough sphere, the surface of which is covered with a hexagonal lattice of cylindrical protrusions. Comparisons with direct numerical simulations performed in both laminar and turbulent regimes allow us to assess the validity and limitations of this condition and of the mathematical model underlying the determination of the slip tensor ${\mathcal{L}}$.


2013 ◽  
Vol 275-277 ◽  
pp. 16-22
Author(s):  
You Liang Xu

The constitutive equation of large deformation problem is closely related to geometric description. Nowadays, linear strain tensor is no longer unsuitable to describe large deformation. However, the existing non-linear strain tensors have complicated forms as well as no apparent geometric or physical meaning. While, the increment method is used to solve, however, convergence and efficiency are low sometimes. Thus the idea of visual strain tensor is proposed, with distinct meaning and visual image. Beside, it is likely to be used in engineering measurement, and it can be connected with measured constitutive equation directly. Thus this research provides a new idea and method for solving large-deformation problems in practical engineering.


Volume 1 ◽  
2004 ◽  
Author(s):  
Ali Reza Saidi ◽  
Koichi Hashiguchi

In this paper a corotational constitutive model for the large elastoplastic deformation of hardening materials using subloading surface model is formulated. This formulation is obtained by refining the large deformation theory of Naghdabadi and Saidi (2002) adopting the corotational logarithmic (Hencky) strain rate tensor and incorporating it into the subloading surface model of Hashiguchi (1980, 2003) falling within the framework of the unconventional plasticity. As an application of the proposed constitutive model, the large Elastoplastic deformation of simple shear example has been solved and the results have been compared with classical elasto-plastic model using the Hencky strain tensor. Also the effect of the choice of corotational rates on stress components has been studied.


2019 ◽  
Vol 878 ◽  
pp. 768-795
Author(s):  
Kuanyu Chen ◽  
Minping Wan ◽  
Lian-Ping Wang ◽  
Shiyi Chen

In this study, the behaviours of subgrid-scale (SGS) turbulence are investigated with direct numerical simulations when an isotropic turbulence is brought to interact with imposed rapid waves. A partition of the velocity field is used to decompose the SGS stress into three parts, namely, the turbulent part $\unicode[STIX]{x1D749}^{T}$, the wave-induced part $\unicode[STIX]{x1D749}^{W}$ and the cross-interaction part $\unicode[STIX]{x1D749}^{C}$. Under strong wave straining, $\unicode[STIX]{x1D749}^{T}$ is found to follow the Kolmogorov scaling $\unicode[STIX]{x1D6E5}_{c}^{2/3}$, where $\unicode[STIX]{x1D6E5}_{c}$ is the filter width. Based on the linear Airy wave theory, $\unicode[STIX]{x1D749}^{W}$ and the filtered strain-rate tensor due to the wave motion, $\tilde{\unicode[STIX]{x1D64E}}^{W}$, are found to have different phases, posing a difficulty in applying the usual eddy-viscosity model. On the other hand, $\unicode[STIX]{x1D749}^{T}$ and the filtered strain-rate tensor due to the turbulent motion, $\tilde{\unicode[STIX]{x1D64E}}^{T}$, are only weakly wave-phase-dependent and could be well related by an eddy-viscosity model. The linear wave theory is also used to describe the vertical distributions of SGS statistics driven by the wave-induced motion. The predictions are in good agreement with the direct numerical simulation results. The budget equation for the turbulent SGS kinetic energy shows that the transport terms related to turbulence are important near the free surface and they compensate the imbalance between the energy flux and the SGS energy dissipation.


Author(s):  
Ruth J. Okamoto ◽  
Yuan Feng ◽  
Guy M. Genin ◽  
Philip V. Bayly

Experimental studies [1] have shown that white matter (WM) in the brain is mechanically anisotropic. Based on its fibrous structure, transversely isotropic (TI) material models have been suggested to capture WM behavior. TI hyperelastic material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy-Green strain tensor to account for the effects of stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not all, published models of WM depend on I4 but not on I5.


2015 ◽  
Vol 772 ◽  
pp. 1-4 ◽  
Author(s):  
Greg A. Voth

Anisotropic particles are suspended in a wide range of industrial, environmental and biological fluid flows. The orientations of these particles are sometimes randomized by turbulence, but often they are brought into preferential alignment by the fluid flow. In a recently published study, Challabotla, Zhao & Andersson (J. Fluid Mech., vol. 766, 2015, R2) performed the first numerical simulations of inertial disks in a turbulent channel flow. They find that disks can be made to preferentially align either parallel or perpendicular to the wall depending on the particle density. Particle shape also affects alignment, particularly for lower density particles, and the alignment of disks is quite different from the alignment of fibres.


Sign in / Sign up

Export Citation Format

Share Document