Confined turbulent entrainment across density interfaces

2015 ◽  
Vol 779 ◽  
pp. 116-143 ◽  
Author(s):  
Ajay B. Shrinivas ◽  
Gary R. Hunt

In pursuit of a universal law for the rate of entrainment across a density interface driven by the impingement of a localised turbulent flow, the role of the confinement, wherein the environment is within the confines of a box, has to date been overlooked. Seeking to unravel the effects of confinement, we develop a phenomenological model describing the quasi-steady rate at which buoyant fluid is turbulently entrained across a density interface separating two uniform layers within the confines of a box. The upper layer is maintained by a turbulent plume, and the localised impingement of a turbulent fountain with the interface drives entrainment of fluid from the upper layer into the lower layer. The plume and fountain rise from sources at the base of the box and are non-interacting. Guided by previous observations, our model characterises the dynamics of fountain–interface interaction and the steady secondary flow in the environment that is induced by the perpetual cycle of vertical excursions of the interface. We reveal that the dimensionless entrainment flux across the interface $E_{i}$ is governed not only by an interfacial Froude number $\mathit{Fr}_{i}$ but also by a ‘confinement’ parameter ${\it\lambda}_{i}$, which characterises the length scale of interfacial turbulence relative to the depth of the upper layer. By deducing the range of ${\it\lambda}_{i}$ that may be regarded as ‘small’ and ‘large’, we shed new light on the effects of confinement on interfacial entrainment. We establish that for small ${\it\lambda}_{i}$, a weak secondary flow has little influence on $E_{i}$, which follows a quadratic power law $E_{i}\propto \mathit{Fr}_{i}^{2}$. For large ${\it\lambda}_{i}$, a strong secondary flow significantly influences $E_{i}$, which then follows a cubic power law $E_{i}\propto \mathit{Fr}_{i}^{3}$. Drawing on these results, and showing that for previous experimental studies ${\it\lambda}_{i}$ exhibits wide variation, we highlight underlying physical reasons for the significant scatter in the existing measurements of the rate of interfacial entrainment. Finally, we explore the implications of our results for guiding appropriate choices of box geometry for experimentally and numerically examining interfacial entrainment.

Author(s):  
Xin Huang ◽  
Duan Li

Traditional modeling on the mean-variance portfolio selection often assumes a full knowledge on statistics of assets' returns. It is, however, not always the case in real financial markets. This paper deals with an ambiguous mean-variance portfolio selection problem with a mixture model on the returns of risky assets, where the proportions of different component distributions are assumed to be unknown to the investor, but being constants (in any time instant). Taking into consideration the updates of proportions from future observations is essential to find an optimal policy with active learning feature, but makes the problem intractable when we adopt the classical methods. Using reinforcement learning, we derive an investment policy with a learning feature in a two-level framework. In the lower level, the time-decomposed approach (dynamic programming) is adopted to solve a family of scenario subcases where in each case the series of component distributions along multiple time periods is specified. At the upper level, a scenario-decomposed approach (progressive hedging algorithm) is applied in order to iteratively aggregate the scenario solutions from the lower layer based on the current knowledge on proportions, and this two-level solution framework is repeated in a manner of rolling horizon. We carry out experimental studies to illustrate the execution of our policy scheme.


1977 ◽  
Vol 79 (04) ◽  
pp. 753 ◽  
Author(s):  
L. H. Kantha ◽  
O. M. Phillips ◽  
R. S. Azad

1995 ◽  
Author(s):  
Y. Ohkita ◽  
H. Kodama ◽  
O. Nozaki ◽  
K. Kikuchi ◽  
A. Tamura

A series of numerical and experimental studies have been conducted to understand the mechanism of loss generation in a high speed compressor stator with inlet radial shear flow over the span. In this study, numerical simulation is extensively used to investigate the complex three-dimensional flow in the cascades and to interpret the phenomena appeared in the high speed compressor tests. It has been shown that the inlet radial shear flow generated by upstream rotor had a significant influence on the stator secondary flow, and consequently on the total pressure loss. Redesign of the stator aiming at the reduction of loss by controlling secondary flow has been carried out and the resultant performance recovery was successfully demonstrated both numerically and experimentally.


Author(s):  
X. Miao ◽  
Q. Zhang ◽  
H. Jiang ◽  
H. Qi

Within the past ten years, significant improvements have been achieved in the laser manufacturing process. It is feasible now to obtain various small-scale surface features (such as dimples, riblets, grooves, etc.) with the current manufacturing readiness level of laser surface texturing techniques. In this paper, the aerodynamic impact of the employment of riblets on turbine endwall has been investigated through combined CFD and experimental studies in a low speed linear cascade environment. Detailed comparisons of the flow structures have been made for cases with and without riblets on the endwall. The results show that endwall riblets can effectively reduce the strength of the pressure side leg of the horseshoe vortex, lower the cross passage pressure gradient, and alleviate the lift up of the passage vortex. A test section with seven passages and eight blades was used to validate the CFD observations. Both numerical and experimental results indicate that, the addition of riblets can be an effective approach to reduce the endwall secondary flow, and there is a large space for further optimization.


Author(s):  
Lile Cao ◽  
Ryo Ito ◽  
Tomohiro Degawa ◽  
Yu Matsuda ◽  
Kotaro Takamure ◽  
...  

Abstract This study experimentally investigates the mixing of a two-layer density-stratified fluid of water (upper layer) and aqueous sodium chloride (NaCl) solution (lower layer) induced by the interaction between a vortex ring and the density interface. The vortex ring, which consists of water, is launched from an orifice in the upper layer toward the density interface, after which its motion, along with the behavior of the lower fluid, is visualized through a planar laser-induced fluorescence method. The Atwood number that expresses the nondimensional density jump across the density interface is set at 0.0055, and the Reynolds number Re of the vortex ring is varied from 2050 to 3070. The visualization experiment clarifies that the vortex ring penetrating the density interface is bounced while collapsing in the lower fluid. Furthermore, it elucidates that the bounced upper fluid entrains the lower fluid into the upper layer by inducing a second vortex ring consisting of the lower fluid. Thus, this study reveals the effect of Re on the mixing of the upper and lower fluid induced by the launched vortex ring.


1998 ◽  
Vol 376 ◽  
pp. 221-261 ◽  
Author(s):  
K. SHIONO ◽  
Y. MUTO

Turbulence and secondary flow measurements were undertaken using a two-component laser-Doppler anemometer in meander channels with straight flood plain banks. The most interesting feature of the compound meandering channel flow was found to be the behaviour of the secondary flow. The difference in direction of rotation of the flow before and after inundation at a bend section was confirmed by the detailed velocity measurements. In addition, by performing the measurement over a half wavelength of meander, the originating and developing processes of the secondary flow were also clarified. In contrast to the centrifugal force for inbank flow, the interaction between the main channel flow and the flood plain flow in the cross-over region was found to play an important role in developing a shear produced secondary flow in the overbank cases. New experimental evidence concerning the spatial distribution of Reynolds stress −ρuw, −ρuv and −ρvw are presented for sinuous compound meander channels. In such channels, large interfacial shear stresses were induced at around the bankfull level, especially in the cross-over region, and were found to be larger than the bed shear stress in magnitude. Particular importance is placed on −ρvw, which is usually small compared with other stress components, as the cause of the secondary flow in the lower layer. The influence of secondary flow on eddy viscosity was found also to be significant. These turbulence data are particularly useful in understanding the flow mechanisms that occur in meandering channels and in developing proper turbulence models for such flows.


1965 ◽  
Vol 5 (04) ◽  
pp. 277-280 ◽  
Author(s):  
Robert D. Vaughn

Abstract The analysis of laminar flow of power-law non- Newtonian fluids in narrow, eccentric annuli is employed in this paper to discuss the problems of lubricant flow in journal bearings and of errors introduced by eccentricity in experimental studies with concentric annuli on extruders and wellbore annuli. The velocity profile and pressure loss-flow rate equations are developed for the laminar flow region. In addition, the expected error in flow rate and pressure-loss measurements for concentric annuli as a result of eccentricity is determined. For example, a 10 per cent displacement of the core of an almost concentric annulus would cause a 1.8 per cent decrease in the observed pressure loss for a fluid with a power-law exponent n of 0.25. The corresponding increase in the observed volumetric flow rate would be 7.5 per cent. Introduction Non-Newtonianism and eccentricity occur simultaneously in two engineering problems:flow of lubricants in journal-bearings and pressure-reducing bushings, andflow of non-Newtonian fluids in plastic extruders and wellbore annuli. The lubricants used for moving parts are often non-Newtonian in character - often they are plastic in behavior. A solution to the problem of flow of non-Newtonian fluids in narrow eccentric annuli is particularly pertinent to this problem. In all experimental studies of laminar flow of fluids in concentric annuli, such as in extruders and well casings, the error due to eccentricity must be estimated or studied. A number of publications have dealt with this problem for Newtonian fluids; however, I am not aware of work for non-Newtonian fluids. This work is directed to the non-Newtonian problem. Before the solution to the problem is given, the pertinent conclusions from the work on Newtonian fluids will be reviewed. Heyda and Redberger and Charles have published general solutions to the problem of the laminar flow of Newtonian fluids in eccentric annuli, apparently without knowing of the earlier work of Caldwell and Bairstow and Berry, which is reported by Dryden, et al. Although several mathematical routes are encompassed by the work of these authors, the results appear to be equivalent. Redberger and Charles show that the error caused by eccentricity in concentric annuli is negligible for small diameter ratios (K less than 0.5); however, for large diameter ratios (K - 1), the error in the predicted flow rate can be as great as 100 per cent or more. Partial solutions to the problem are available from the work of Dryden, Tao and Donovan and Piercy, et al. Tao and Donovan examined the case of flow in narrow, eccentric annuli (K - 1) with and without rotation of the annular core. These authors also reviewed previous work on this subject and verified their approach with experimental data. Dryden gives the solution for the limiting case of complete eccentricity or tangency. Piercy, et al. published an early solution to the problem of narrow eccentric annular flow. The conclusions of Redberger and Charles and the experimental proof of Tao and Donovans both suggest that the region of large diameter ratios (K - 1) is of main interest and that the parallel planes approximation to the solution in this region is satisfactory. This method will now be extended to the laminar flow of non-Newtonian fluids in narrow eccentric annuli. THEORETICAL SOLUTION The geometrical aspects of the problem are illustrated in Fig. 1. To represent the non-Newtonian fluid the power-law model was selected. (1) This model has many disadvantages which have been pointed out; nevertheless, As simplicity, its frequent and wide applicability justify its use in this work. Fredrickson and Birds and Savins have used it as a basis for a theoretical study of laminar flow of non-Newtonian fluids in concentric annuli. SPEJ P. 277ˆ


1989 ◽  
Vol 209 ◽  
pp. 1-34 ◽  
Author(s):  
Harindra J. S. Fernando

An experimental investigation of various aspects of buoyancy transfer across a diffusive density interface that separates stably stratified, turbulently convecting layers of relatively fresh cold water overlying hot salty water is described. It is argued that the interfacial layer should possess a double boundary-layer structure, in which the thicknesses of the salt and heat interfacial layers are determined by a balance between the opposing effects of diffusion and entrainment. Based on this argument, a simple theory, that predicts the interfacial-layer thickness, the diffusive heat and salt fluxes across the density interface, and the time variation of the temperature and salt concentrations in the convecting layers, is proposed for the case in which the convection is driven by a constant heat flux supplied to the lower layer. During a certain time interval, the theory and experiment agree well, but thereafter distinct differences can be seen. Measurements suggest that these differences may be due to the distortion of the density interface at low interfacial stabilities by turbulent eddies, which leads to a change in the buoyancy transfer mechanism. When the Richardson number falls below a critical value Riv, the interface was found to migrate slowly upwards and the mechanism of entrainment was the detachment of thin sheets of fluid by eddies scouring the interface.


Sign in / Sign up

Export Citation Format

Share Document