scholarly journals Rotating Taylor–Green flow

2015 ◽  
Vol 769 ◽  
pp. 46-78 ◽  
Author(s):  
A. Alexakis

The steady state of a forced Taylor–Green flow is investigated in a rotating frame of reference. The investigation involves the results of 184 numerical simulations for different Reynolds numbers $\mathit{Re}_{F}$ and Rossby numbers $\mathit{Ro}_{F}$. The large number of examined runs allows a systematic study that enables the mapping of the different behaviours observed to the parameter space ($\mathit{Re}_{F},\mathit{Ro}_{F}$), and the examination of different limiting procedures for approaching the large $\mathit{Re}_{F}$ small $\mathit{Ro}_{F}$ limit. Four distinctly different states were identified: laminar, intermittent bursts, quasi-two-dimensional condensates and weakly rotating turbulence. These four different states are separated by power-law boundaries $\mathit{Ro}_{F}\propto \mathit{Re}_{F}^{-{\it\gamma}}$ in the small $\mathit{Ro}_{F}$ limit. In this limit, the predictions of asymptotic expansions can be directly compared with the results of the direct numerical simulations. While the first-order expansion is in good agreement with the results of the linear stability theory, it fails to reproduce the dynamical behaviour of the quasi-two-dimensional part of the flow in the nonlinear regime, indicating that higher-order terms in the expansion need to be taken into account. The large number of simulations allows also to investigate the scaling that relates the amplitude of the fluctuations with the energy dissipation rate and the control parameters of the system for the different states of the flow. Different scaling was observed for different states of the flow, that are discussed in detail. The present results clearly demonstrate that the limits of small Rossby and large Reynolds numbers do not commute and it is important to specify the order in which they are taken.

1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


1998 ◽  
Vol 12 (01) ◽  
pp. 11-15 ◽  
Author(s):  
A. Bershadskii

It is shown that multifractal data on critical behavior of wavefunctions at the Anderson metal–insulator transition obtained in numerical simulations are in good agreement with constant specific-heat multifractal approximation for three and two dimensional cases (in the last case in high magnetic field). A relation of this approximation to the parabolic multifractal approximation is also briefly discussed.


1972 ◽  
Vol 186 (1) ◽  
pp. 625-633
Author(s):  
A. P. Hatton ◽  
N. H. Woolley

Measurements of displacement and momentum thickness, friction factor and Stanton number were made in a narrow angle diverging duct consisting of two plane walls, width 0·82 m. The height of the duct varied from 0·051 to 0·152 m over a length of 3·94 m. Reynolds numbers ranged from 8·7 × 104 to 20·7 × 104. The results are compared with a prediction method using a numerical solution of the two-dimensional equation of motion and energy. An eddy diffusivity hypothesis was used, based on the turbulence energy equation and an empirical length scale distribution. Good agreement was obtained between the theoretical and experimental results, both before and after the boundary layers interfered, and with previously reported experiments in a parallel duct. It was necessary to change the value of one of the constants in the analysis for each geometry.


2016 ◽  
Vol 806 ◽  
pp. 627-648 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the dynamo instability for a Kazantsev–Kraichnan flow with three velocity components that depend only on two dimensions $\boldsymbol{u}=(u(x,y,t),v(x,y,t),w(x,y,t))$ often referred to as 2.5-dimensional (2.5-D) flow. Within the Kazantsev–Kraichnan framework we derive the governing equations for the second-order magnetic field correlation function and examine the growth rate of the dynamo instability as a function of the control parameters of the system. In particular we investigate the dynamo behaviour for large magnetic Reynolds numbers $Rm$ and flows close to being two-dimensional and show that these two limiting procedures do not commute. The energy spectra of the unstable modes are derived analytically and lead to power-law behaviour that differs from the three-dimensional and two-dimensional cases. The results of our analytical calculation are compared with the results of numerical simulations of dynamos driven by prescribed fluctuating flows as well as freely evolving turbulent flows, showing good agreement.


1990 ◽  
Vol 210 ◽  
pp. 281-302 ◽  
Author(s):  
D. B. Ingham ◽  
T. Tang ◽  
B. R. Morton

A numerical and experimental study is described for the two-dimensional steady flow through a uniform cascade of normal flat plates. The Navier–Stokes equations are written in terms of the stream function and vorticity and are solved using a second-order-accurate finite-difference scheme which is based on a modified procedure to preserve accuracy and iterative convergence at higher Reynolds numbers. The upstream and downstream boundary conditions are discussed and an asymptotic solution is employed both upstream and downstream. A frequently used method for dealing with corner singularities is shown to be inaccurate and a method for overcoming this problem is described. Numerical solutions have been obtained for blockage ratio of 50 % and Reynolds numbers in the range 0 [les ]R[les ] 500 and results for both the lengths of attached eddies and the drag coefficients are presented. The calculations indicate that the eddy length increases linearly withR, at least up toR= 500, and that the multiplicative constant is in very good agreement with the theoretical prediction of Smith (1985a), who considered a related problem. In the case ofR= 0 the Navier–Stokes equations are solved using the finite-difference scheme and a modification of the boundary-element method which treats the corner singularities. The solutions obtained by the two methods are compared and the results are shown to be in good agreement. An experimental investigation has been performed at small and moderate values of the Reynolds numbers and there is excellent agreement with the numerical results both for flow streamlines and eddy lengths.


2016 ◽  
Vol 27 (11) ◽  
pp. 1650127 ◽  
Author(s):  
M. Rodríguez-Achach ◽  
H. F. Coronel-Brizio ◽  
A. R. Hernández-Montoya ◽  
R. Huerta-Quintanilla ◽  
E. Canto-Lugo

Minesweeper is a famous computer game consisting usually in a two-dimensional lattice, where cells can be empty or mined and gamers are required to locate the mines without dying. Even if minesweeper seems to be a very simple system, it has some complex and interesting properties as NP-completeness. In this paper and for the one-dimensional case, given a lattice of n cells and m mines, we calculate the winning probability. By numerical simulations this probability is also estimated. We also find out by mean of these simulations that there exists a critical density of mines that minimize the probability of winning the game. Analytical results and simulations are compared showing a very good agreement.


1972 ◽  
Vol 52 (3) ◽  
pp. 425-435 ◽  
Author(s):  
J. P. Batham

Separating and reattaching flows in a two-dimensional compression corner were investigated experimentally at a Mach number of 7·0 and Reynolds numbers (based on the distance from the leading edge to the corner) of 4·75 × 106, 9·51 × 106 and 1·55 × 107. Heat-transfer measurements and Pitot traverses in the upstream boundary layer showed that the boundary layer had become fully turbulent at the start of the interactions. Increases in the Reynolds number gave increases in the length of separated shear layers and decreases in the corner angle required for incipient, separation. The reattachment pressure coefficients gave good agreement with the criterion of Batham (1969).


1973 ◽  
Vol 61 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Noor Afzal ◽  
Kirit Yajnik

Effects of moderately large Reynolds numbers R are studied by considering higher order terms in the expansions for turbulent pipe and channel flows for R → ∞. Matched asymptotic expansions using two length scales are employed to emphasize the two-layer structure of turbulent shear flows near solid walls. The effects appear as additional terms in extended forms of the law of the wall, the logarithmic velocity law, the velocity defect law and the logarithmic skinfriction law. These generalizations are critically compared with experimental results for pipe flows of Patel & Head and extremely good agreement is obtained. Also, possible applications are discussed for extending the range of skin-friction and heat-transfer devices which are based on wall similarity.


Sign in / Sign up

Export Citation Format

Share Document