scholarly journals Bypassing slip velocity: rotational and translational velocities of autophoretic colloids in terms of surface flux

2016 ◽  
Vol 802 ◽  
pp. 294-304 ◽  
Author(s):  
Paul E. Lammert ◽  
Vincent H. Crespi ◽  
Amir Nourhani

A standard approach to propulsion velocities of autophoretic colloids with thin interaction layers uses a reciprocity relation applied to the slip velocity although the surface flux (chemical, electrical, thermal, etc.), which is the source of the field driving the slip, is often more accessible. We show how, under conditions of low Reynolds number and a field obeying the Laplace equation in the outer region, the slip velocity can be bypassed in velocity calculations. In a sense, the actual slip velocity and a normal field proportional to the flux density are equivalent for this type of calculation. Using known results for surface traction induced by rotating or translating an inert particle in a quiescent fluid, we derive simple and explicit integral formulas for translational and rotational velocities of arbitrary spheroidal and slender-body autophoretic colloids.

2016 ◽  
Vol 802 ◽  
pp. 174-185 ◽  
Author(s):  
F. Candelier ◽  
B. Mehlig

We compute the hydrodynamic torque on a dumbbell (two spheres linked by a massless rigid rod) settling in a quiescent fluid at small but finite Reynolds number. The spheres have the same mass densities but different sizes. When the sizes are quite different, the dumbbell settles vertically, aligned with the direction of gravity, the largest sphere first. But when the size difference is sufficiently small, then its steady-state angle is determined by a competition between the size difference and the Reynolds number. When the sizes of the spheres are exactly equal, then fluid inertia causes the dumbbell to settle in a horizontal orientation.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


Author(s):  
Yvan Maciel ◽  
Tie Wei ◽  
Ayse G. Gungor ◽  
Mark P. Simens

We perform a careful nondimensional analysis of the turbulent boundary layer equations in order to bring out, without assuming any self-similar behaviour, a consistent set of nondimensional parameters characterizing the outer region of turbulent boundary layers with arbitrary pressure gradients. These nondimensional parameters are a pressure gradient parameter, a Reynolds number (different from commonly used ones) and an inertial parameter. They are obtained without assuming a priori the outer length and velocity scales. They represent the ratio of the magnitudes of two types of forces in the outer region, using the Reynolds shear stress gradient (apparent turbulent force) as the reference force: inertia to apparent turbulent forces for the inertial parameter, pressure to apparent turbulent forces for the pressure gradient parameter and apparent turbulent to viscous forces for the Reynolds number. We determine under what conditions they retain their meaning, depending on the outer velocity scale that is considered, with the help of seven boundary layer databases. We find the impressive result that if the Zagarola-Smits velocity is used as the outer velocity scale, the streamwise evolution of the three ratios of forces in the outer region can be accurately followed with these non-dimensional parameters in all these flows — not just the order of magnitude of these ratios. This cannot be achieved with three other outer velocity scales commonly used for pressure gradient turbulent boundary layers. Consequently, the three new nondimensional parameters, when expressed with the Zagarola-Smits velocity, can be used to follow — in a global sense — the streamwise evolution of the stream-wise mean momentum balance in the outer region. This study provides a clear and consistent framework for the analysis of the outer region of adverse-pressure-gradient turbulent boundary layers.


2019 ◽  
Vol 872 ◽  
pp. 198-217 ◽  
Author(s):  
Duosi Fan ◽  
Jinglei Xu ◽  
Matthew X. Yao ◽  
Jean-Pierre Hickey

A novel approach to identify internal interfacial layers, or IILs, in wall-bounded turbulent flows is proposed. Using a fuzzy cluster method (FCM) on the streamwise velocity component, a unique and unambiguous grouping of the uniform momentum zones (UMZs) is achieved, thus allowing the identification of the IILs. The approach overcomes some of the key limitations of the histogram-based IIL identification methods. The method is insensitive to the streamwise domain length, can be used on inhomogeneous grids, uses all the available flow field data, is trivially extended to three dimensions and does not need user-defined parameters (e.g. number of bins) other than the number of zones. The number of zones for a given snapshot can be automatically determined by an a priori algorithm based on a kernel density estimation algorithm, or KDE. This automated approach is applied to compute the average number of UMZs as a function of Reynolds number $Re_{\unicode[STIX]{x1D70F}}$ in turbulent channel flows in several numerical simulations. This systematic approach reveals a dependence of the Reynolds number on the average number of UMZs in the channel flow; this supports previously reported observations in the boundary layer. The fuzzy clustering approach is applied to the turbulent boundary layer (experimental, planar particle image velocimetry) and channel flow (numerical, direct numerical simulation) at varying Reynolds numbers. The interfacial layers are characterized by a strong concentration of spanwise vorticity, with the outer-most layer located at the upper edge of the log layer. The three-dimensional interface identification reveals a streak-like organization. The large-scale motion (LSM) at the outer region of the channel flow boundary layer modulates the outer IIL. The corrugations of the outer IIL are aligned with the LSM and the conditional correlation of the inner and outer IIL height shows that extreme near-wall events leave their mark on the outer IIL corrugations.


2019 ◽  
Vol 862 ◽  
Author(s):  
Johan Meyers ◽  
Bharathram Ganapathisubramani ◽  
Raúl Bayoán Cal

In rough-wall boundary layers, wall-parallel non-homogeneous mean-flow solutions exist that lead to so-called dispersive velocity components and dispersive stresses. They play a significant role in the mean-flow momentum balance near the wall, but typically disappear in the outer layer. A theoretical framework is presented to study the decay of dispersive motions in the outer layer. To this end, the problem is formulated in Fourier space, and a set of governing ordinary differential equations per mode in wavenumber space is derived by linearizing the Reynolds-averaged Navier–Stokes equations around a constant background velocity. With further simplifications, analytically tractable solutions are found consisting of linear combinations of $\exp (-kz)$ and $\exp (-Kz)$, with $z$ the wall distance, $k$ the magnitude of the horizontal wavevector $\boldsymbol{k}$, and where $K(\boldsymbol{k},Re)$ is a function of $\boldsymbol{k}$ and the Reynolds number $Re$. Moreover, for $k\rightarrow \infty$ or $k_{1}\rightarrow 0$ (with $k_{1}$ the stream-wise wavenumber), $K\rightarrow k$ is found, in which case solutions consist of a linear combination of $\exp (-kz)$ and $z\exp (-kz)$, and are independent of the Reynolds number. These analytical relations are compared in the limit of $k_{1}=0$ to the rough boundary layer experiments by Vanderwel & Ganapathisubramani (J. Fluid Mech., vol. 774, 2015, R2) and are in reasonable agreement for $\ell _{k}/\unicode[STIX]{x1D6FF}\leqslant 0.5$, with $\unicode[STIX]{x1D6FF}$ the boundary-layer thickness and $\ell _{k}=2\unicode[STIX]{x03C0}/k$.


2018 ◽  
Vol 75 (9) ◽  
pp. 3211-3231 ◽  
Author(s):  
Ivo G. S. van Hooijdonk ◽  
Herman J. H. Clercx ◽  
Cedrick Ansorge ◽  
Arnold F. Moene ◽  
Bas J. H. van de Wiel

Abstract We perform direct numerical simulation of the Couette flow as a model for the stable boundary layer. The flow evolution is investigated for combinations of the (bulk) Reynolds number and the imposed surface buoyancy flux. First, we establish what the similarities and differences are between applying a fixed buoyancy difference (Dirichlet) and a fixed buoyancy flux (Neumann) as boundary conditions. Moreover, two distinct parameters were recently proposed for the turbulent-to-laminar transition: the Reynolds number based on the Obukhov length and the “shear capacity,” a velocity-scale ratio based on the buoyancy flux maximum. We study how these parameters relate to each other and to the atmospheric boundary layer. The results show that in a weakly stratified equilibrium state, the flow statistics are virtually the same between the different types of boundary conditions. However, at stronger stratification and, more generally, in nonequilibrium conditions, the flow statistics do depend on the type of boundary condition imposed. In the case of Neumann boundary conditions, a clear sensitivity to the initial stratification strength is observed because of the existence of multiple equilibriums, while for Dirichlet boundary conditions, only one statistically steady turbulent equilibrium exists for a particular set of boundary conditions. As in previous studies, we find that when the imposed surface flux is larger than the maximum buoyancy flux, no turbulent steady state occurs. Analytical investigation and simulation data indicate that this maximum buoyancy flux converges for increasing Reynolds numbers, which suggests a possible extrapolation to the atmospheric case.


2014 ◽  
Vol 764 ◽  
pp. 148-170 ◽  
Author(s):  
Christopher Koehler ◽  
Philip Beran ◽  
Marcos Vanella ◽  
Elias Balaras

AbstractFlows produced by a circular cylinder undergoing oscillatory rotation and translation in a quiescent fluid have been studied via direct numerical simulations. The incompressible Navier–Stokes equations were solved for large dimensionless time windows using an immersed boundary method with adaptive Cartesian grid refinement. Parametric studies were conducted in two dimensions on the Reynolds number, Keulegan–Carpenter number and phase shift. In addition to the previously reported net thrust case (Blackburn et al., Phys. Fluids, vol. 11, 1999, pp. 4–6), the study catalogued the appearance of several streaming jet regimes with varying deflection angles, deflected and horizontal vortex shedding regimes, and a double mirrored jet regime with varying inter-jet angles, as well as several chaotic cases. Visualizations are presented to clarify each observed flow regime and to illustrate the parameter space. Connections are drawn between these canonical bluff-body deflected wakes and a similar phenomenon observed in aerofoils oscillating at high reduced frequencies in a cross-flow. Also, the discovery of the streaming jet regimes with varying deflection angles opens the door for using these flows as a low-Reynolds-number propulsive mechanism requiring only a two-degree-of-freedom actuator. Simulation results suggest that the flow phenomena observed in two dimensions persist in three dimensions, despite spanwise fluctuations.


2007 ◽  
Vol 584 ◽  
pp. 281-299 ◽  
Author(s):  
KYOUNGYOUN KIM ◽  
CHANG-F. LI ◽  
R. SURESHKUMAR ◽  
S. BALACHANDAR ◽  
RONALD J. ADRIAN

The effects of polymer stresses on near-wall turbulent structures are examined by using direct numerical simulation of fully developed turbulent channel flows with and without polymer stress. The Reynolds number based on friction velocity and half-channel height is 395, and the stresses created by adding polymer are modelled by a finite extensible nonlinear elastic, dumbbell model. Both low- (18%) and high-drag reduction (61%) cases are investigated. Linear stochastic estimation is employed to compute the conditional averages of the near-wall eddies. The conditionally averaged flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical structures are weakened and elongated in the streamwise direction by polymer stresses in a manner similar to that found by Stone et al. (2004) for low-Reynolds-number quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged fields for the events with large contribution to the polymer work are also examined. The vortical structures in drag-reduced turbulence are very similar to those for the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin vortices above the buffer layer. The three-dimensional distributions of conditionally averaged polymer force around these vortical structures show that the polymer force components oppose the vortical motion. More fundamentally, the torques due to polymer stress are shown to oppose the rotation of the vortices, thereby accounting for their weakening. The observations also extend concepts of the vortex retardation by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and offer an explanation of the mechanism of drag reduction in the outer region of wall turbulence, as well as in the buffer layer.


1999 ◽  
Vol 66 (3) ◽  
pp. 811-814
Author(s):  
W. Liu ◽  
A. Plotkin

This paper presents an application of the Cosserat spectrum theory in elasticity to the solution of low Reynolds number (Stokes flow) problems. The velocity field is divided into two components: a solution to the vector Laplace equation and a solution associated with the discrete Cosserat eigenvectors. Analytical solutions are presented for the Stokes flow past a sphere with uniform, extensional, and linear shear freestream profiles.


2017 ◽  
Vol 822 ◽  
pp. 109-138 ◽  
Author(s):  
C. Sanmiguel Vila ◽  
R. Vinuesa ◽  
S. Discetti ◽  
A. Ianiro ◽  
P. Schlatter ◽  
...  

This paper introduces a new method based on the diagnostic plot (Alfredsson et al., Phys. Fluids, vol. 23, 2011, 041702) to assess the convergence towards a well-behaved zero-pressure-gradient (ZPG) turbulent boundary layer (TBL). The most popular and well-understood methods to assess the convergence towards a well-behaved state rely on empirical skin-friction curves (requiring accurate skin-friction measurements), shape-factor curves (requiring full velocity profile measurements with an accurate wall position determination) or wake-parameter curves (requiring both of the previous quantities). On the other hand, the proposed diagnostic-plot method only needs measurements of mean and fluctuating velocities in the outer region of the boundary layer at arbitrary wall-normal positions. To test the method, six tripping configurations, including optimal set-ups as well as both under- and overtripped cases, are used to quantify the convergence of ZPG TBLs towards well-behaved conditions in the Reynolds-number range covered by recent high-fidelity direct numerical simulation data up to a Reynolds number based on the momentum thickness and free-stream velocity $Re_{\unicode[STIX]{x1D703}}$ of approximately 4000 (corresponding to 2.5 m from the leading edge) in a wind-tunnel experiment. Additionally, recent high-Reynolds-number data sets have been employed to validate the method. The results show that weak tripping configurations lead to deviations in the mean flow and the velocity fluctuations within the logarithmic region with respect to optimally tripped boundary layers. On the other hand, a strong trip leads to a more energized outer region, manifested in the emergence of an outer peak in the velocity-fluctuation profile and in a more prominent wake region. While established criteria based on skin-friction and shape-factor correlations yield generally equivalent results with the diagnostic-plot method in terms of convergence towards a well-behaved state, the proposed method has the advantage of being a practical surrogate that is a more efficient tool when designing the set-up for TBL experiments, since it diagnoses the state of the boundary layer without the need to perform extensive velocity profile measurements.


Sign in / Sign up

Export Citation Format

Share Document