A slender drop in a nonlinear extensional flow

2016 ◽  
Vol 808 ◽  
pp. 337-361 ◽  
Author(s):  
Moshe Favelukis

The deformation of a slender drop in a nonlinear axisymmetric extensional and creeping flow has been theoretically studied. This problem, which was first suggested by Sherwood (J. Fluid Mech., vol. 144, 1984, pp. 281–295), is being revisited, and new results are presented. The problem is governed by three dimensionless parameters: the capillary number ($\mathit{Ca}\gg 1$), the viscosity ratio ($\unicode[STIX]{x1D706}\ll 1$), and the nonlinear intensity of the flow ($E\ll 1$). Contrary to linear extensional flow ($E=0$), where the local radius of the drop decreases monotonically (in the positive $z$ direction), in a nonlinear extensional flow ($E\neq 0$), two possible steady shapes exist: steady shapes (stable or unstable) with the local radius decreasing monotonically, and steady shapes (unstable) where the local radius of the drop has a local maximum, besides the one at the centre of the drop. Similar to linear extensional flow, the addition of nonlinear extensional effects does not change the end shape of the steady drop, which has pointed ends. A stability analysis has been done to distinguish between stable and unstable steady shapes and to determine the breakup point. Time-dependent studies reveal three types of breakup mechanism: a centre pinching mode, indefinite elongation, and a mechanism that remind us of tip-streaming, where a cusp is developed at the end of the drop.

2019 ◽  
Vol 877 ◽  
pp. 561-581 ◽  
Author(s):  
Moshe Favelukis

In this theoretical report we explore the deformation and stability of a power-law non-Newtonian slender drop embedded in a Newtonian liquid undergoing a nonlinear extensional creeping flow. The dimensionless parameters describing this problem are: the capillary number $(Ca\gg 1)$, the viscosity ratio $(\unicode[STIX]{x1D706}\ll 1)$, the power-law index $(n)$ and the nonlinear intensity of the flow $(|E|\ll 1)$. Asymptotic analytical solutions were obtained near the centre and close to the end of the drop suggesting that only Newtonian and shear thinning drops $(n\leqslant 1)$ with pointed ends are possible. We described the shape of the drop as a series expansion about the centre of the drop, and performed a stability analysis in order to distinguish between stable and unstable stationary states and to establish the breakup point. Our findings suggest: (i) shear thinning drops are less elongated than Newtonian drops, (ii) as non-Newtonian effects increase or as $n$ decreases, breakup becomes more difficult, and (iii) as the flow becomes more nonlinear, breakup is facilitated.


2019 ◽  
Vol 8 (1) ◽  
pp. 117-126
Author(s):  
Moshe Favelukis

Abstract Mass transfer around a slender drop in a nonlinear extensional and creeping flow is theoretically studied. The fluid mechanics problem is governed by three dimensionless parameters: The capillary number (Ca ≫ 1), the viscosity ratio (λ ≪ 1), and the nonlinear intensity of the flow (|E| ≪ 1). The transfer of mass around such a drop is studied for the two asymptotic cases of large and zero Peclet numbers (Pe). The results show that as the capillary number increases, the drop becomes longer, thinner, its surface area increases, leading to larger mass transfer rates, especially at large Peclet numbers, since then convection contributes to the overall mass transfer as well. Taking a slender inviscid drop (λ = 0) in a linear extensional flow (E = 0) as our reference case, we find that the addition of nonlinear effects to the flow sometimes increases (Eλ−1Ca−2 < 64/9) and sometimes decreases (Eλ−1Ca−2 > 64/9) the rate of mass transfer.


1986 ◽  
Vol 164 ◽  
pp. 305-336 ◽  
Author(s):  
Madalena M. Dias ◽  
Alkiviades C. Payatakes

A theoretical simulator of immiscible displacement of a non-wetting fluid by a wetting one in a random porous medium is developed. The porous medium is modelled as a network of randomly sized unit cells of the constricted-tube type. Under creeping-flow conditions the problem is reduced to a system of linear equations, the solution of which gives the instantaneous pressures at the nodes and the corresponding flowrates through the unit cells. The pattern and rate of the displacement are obtained by assuming quasi-static flow and taking small time increments. The porous medium adopted for the simulations is a sandpack with porosity 0.395 and grain sizes in the range from 74 to 148 μrn. The effects of the capillary number, Ca, and the viscosity ratio, κ = μo/μw, are studied. The results confirm the importance of the capillary number for displacement, but they also show that for moderate and high Ca values the role of κ is pivotal. When the viscosity ratio is favourable (κ < 1), the microdisplacement efficiency begins to increase rapidly with increasing capillary number for Ca > 10−5, and becomes excellent as Ca → 10−3. On the other hand, when the viscosity ratio is unfavourable (κ > 1), the microdisplacement efficiency begins to improve only for Ca values larger than, say, 5 × 10−4, and is substantially inferior to that achieved with κ < 1 and the same Ca value. In addition to the residual saturation of the non-wetting fluid, the simulator predicts the time required for the displacement, the pattern of the transition zone, the size distribution of the entrapped ganglia, and the acceptance fraction as functions of Ca, κ, and the porous-medium geometry.


2011 ◽  
Vol 678 ◽  
pp. 221-247 ◽  
Author(s):  
P. M. VLAHOVSKA ◽  
Y.-N. YOUNG ◽  
G. DANKER ◽  
C. MISBAH

We study the motion and deformation of a liquid capsule enclosed by a surface-incompressible membrane as a model of red blood cell dynamics in shear flow. Considering a slightly ellipsoidal initial shape, an analytical solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, area-incompressibility and resistance to bending. The theory captures the observed transition from tumbling to swinging as the shear rate increases and clarifies the effect of capsule deformability. Near the transition, intermittent behaviour (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the vorticity direction occurs, i.e. if the capsule ‘breathes’. We report the phase diagram of capsule motions as a function of viscosity ratio, non-sphericity and dimensionless shear rate.


Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


Author(s):  
Nariman Ashrafi

The nonlinear stability and bifurcation of the one-dimensional channel (Poiseuille) flow is examined for a Johnson-Segalman fluid. The velocity and stress are represented by orthonormal functions in the transverse direction to the flow. The flow field is obtained from the conservation and constitutive equations using the Galerkin projection method. Both inertia and normal stress effects are included. The stability picture is dramatically influenced by the viscosity ratio. The range of shear rate or Weissenberg number for which the base flow is unstable increases from zero as the fluid deviates from the Newtonian limit as decreases. Typically, two turning points are observed near the critical Weissenberg numbers. The transient response is heavily influenced by the level of inertia. It is found that the flow responds oscillatorily. When the Reynolds number is small, and monotonically at large Reynolds number when elastic effects are dominated by inertia.


Author(s):  
Daniel M. Tibaduiza ◽  
Luis Barbosa Pires ◽  
Carlos Farina

Abstract In this work, we give a quantitative answer to the question: how sudden or how adiabatic is a frequency change in a quantum harmonic oscillator (HO)? We do that by studying the time evolution of a HO which is initially in its fundamental state and whose time-dependent frequency is controlled by a parameter (denoted by ε) that can continuously tune from a totally slow process to a completely abrupt one. We extend a solution based on algebraic methods introduced recently in the literature that is very suited for numerical implementations, from the basis that diagonalizes the initial hamiltonian to the one that diagonalizes the instantaneous hamiltonian. Our results are in agreement with the adiabatic theorem and the comparison of the descriptions using the different bases together with the proper interpretation of this theorem allows us to clarify a common inaccuracy present in the literature. More importantly, we obtain a simple expression that relates squeezing to the transition rate and the initial and final frequencies, from which we calculate the adiabatic limit of the transition. Analysis of these results reveals a significant difference in squeezing production between enhancing or diminishing the frequency of a HO in a non-sudden way.


Sign in / Sign up

Export Citation Format

Share Document