Linear instability of low Reynolds number massively separated flow around three NACA airfoils

2016 ◽  
Vol 811 ◽  
pp. 701-741 ◽  
Author(s):  
W. He ◽  
R. S. Gioria ◽  
J. M. Pérez ◽  
V. Theofilis

Two- and three-dimensional modal and non-modal instability mechanisms of steady spanwise-homogeneous laminar separated flow over airfoil profiles, placed at large angles of attack against the oncoming flow, have been investigated using global linear stability theory. Three NACA profiles of distinct thickness and camber were considered in order to assess geometry effects on the laminar–turbulent transition paths discussed. At the conditions investigated, large-scale steady separation occurs, such that Tollmien–Schlichting and cross-flow mechanisms have not been considered. It has been found that the leading modal instability on all three airfoils is that associated with the Kelvin–Helmholtz mechanism, taking the form of the eigenmodes known from analysis of generic bluff bodies. The three-dimensional stationary eigenmode of the two-dimensional laminar separation bubble, associated in earlier analyses with the formation on the airfoil surface of large-scale separation patterns akin to stall cells, is shown to be more strongly damped than the Kelvin–Helmholtz mode at all conditions examined. Non-modal instability analysis reveals the potential of the flows considered to sustain transient growth which becomes stronger with increasing angle of attack and Reynolds number. Optimal initial conditions have been computed and found to be analogous to those on a cascade of low pressure turbine blades. By changing the time horizon of the analysis, these linear optimal initial conditions have been found to evolve into the Kelvin–Helmholtz mode. The time-periodic base flows ensuing linear amplification of the Kelvin–Helmholtz mode have been analysed via temporal Floquet theory. Two amplified modes have been discovered, having characteristic spanwise wavelengths of approximately 0.6 and 2 chord lengths, respectively. Unlike secondary instabilities on the circular cylinder, three-dimensional short-wavelength perturbations are the first to become linearly unstable on all airfoils. Long-wavelength perturbations are quasi-periodic, standing or travelling-wave perturbations that also become unstable as the Reynolds number is further increased. The dominant short-wavelength instability gives rise to spanwise periodic wall-shear patterns, akin to the separation cells encountered on airfoils at low angles of attack and the stall cells found in flight at conditions close to stall. Thickness and camber have quantitative but not qualitative effect on the secondary instability analysis results obtained.

Author(s):  
Tatsuo Onishi ◽  
Ste´phane Burguburu ◽  
Olivier Dessornes ◽  
Yves Ribaud

A full three dimensional Navier-Stokes solver elsA developed by ONERA is used to design and study the aerothermodynamics of a MEMS-based micro turbine. This work is performed in the framework of micro turbomachinery project at ONERA. A few millimeter scale micro turbine is operated in a low Reynolds number regime (Re = 5,000∼50,000), which implies a more important influence of skin friction and heat transfer than the conventional large-scale gas turbine. The 2D geometry constraints due to the limitation of fabrication technology also distinguish the aerothermodynamic characteristics of a micro turbine from that of conventional turbomachinery. Thus, for the foundation of aerothermodynamic design of micro turbomachinery, understanding of low Reynolds number effects on the performance is required and then the design of the turbine geometry can be optimized. In this study, aero-thermodynamic effects at low Reynolds number and different stator/rotor configurations are examined with a prescribed wall temperature. Losses due to heat transfer to walls and skin friction are estimated and their effects on the operating performance are discussed. Power delivery to turbine blades is checked and found satisfactory to give the objective design value of more than 100W. The effects of turbine exhaust geometry and the number of blades on turbine performance are also discussed.


2003 ◽  
Vol 125 (5) ◽  
pp. 779-787 ◽  
Author(s):  
Hideki Yanaoka ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

Three-dimensional simulation of turbulent separated and reattached flow and heat transfer over a blunt flat plate is presented. The Reynolds number analyzed is 5000. The vortices shed from the reattachment flow region exhibit a hairpin-like structure. These large-scale vortex structures greatly influence the heat transfer in the reattachment region. Present results are compared with the previous three-dimensional calculations at low Reynolds number and it is found that there is no essential difference between two results with respect to the flow structure. The reattachment length is about five plate thicknesses, which is nearly equal to the previous experimental ones. The velocity distributions and turbulence intensities are in good agreement with the experimental data. Further, it is clarified that Nusselt number and temperature distributions greatly depend upon the Reynolds number, though their characteristic behaviors are qualitatively well simulated.


Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
Paul M. Kieniewicz ◽  
Bruce P. Luyendyk

The Santa Maria Basin in southern California is a lowland bounded on the south by the Santa Ynez River fault and on the northeast by the Little Pine‐Foxen Canyon‐Santa Maria River faults. It contains Neogene sedimentary rocks which rest unconformably on a basement of Cretaceous and older clastic rocks. Analysis of over 4 000 gravity stations obtained from the Defense Mapping Agency suggests that the Bouguer anomaly contains a short‐wavelength component arising from a variable‐density contrast between the basin’s Neogene units and the Cretaceous basement. A three‐dimensional inversion of the short‐wavelength component (constrained by wells drilled to basement) yields a structure model of the basement and the average density of the overlying sediments, assuming that the basement does not contain large‐scale density variations. The density anomalies modeled in the Neogene sediments, showing higher densities in the basin troughs, can be related to diagenetic changes in the silica facies of the Monterey and Sisquoc formations. The basement structure model shows the basin as composed of parallel ridges and troughs, trending west‐northwest and bounded by steep slopes interpreted as fault scarps. The basin is bounded on the west by a north‐south trending slope which may also represent a fault scarp.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


2016 ◽  
Vol 802 ◽  
pp. 726-749 ◽  
Author(s):  
R. D. Brackston ◽  
J. M. García de la Cruz ◽  
A. Wynn ◽  
G. Rigas ◽  
J. F. Morrison

A specific feature of three-dimensional bluff body wakes, flow bistability, is a subject of particular recent interest. This feature consists of a random flipping of the wake between two asymmetric configurations and is believed to contribute to the pressure drag of many bluff bodies. In this study we apply the modelling approach recently suggested for axisymmetric bodies by Rigaset al.(J. Fluid Mech., vol. 778, 2015, R2) to the reflectional symmetry-breaking modes of a rectilinear bluff body wake. We demonstrate the validity of the model and its Reynolds number independence through time-resolved base pressure measurements of the natural wake. Further, oscillating flaps are used to investigate the dynamics and time scales of the instability associated with the flipping process, demonstrating that they are largely independent of Reynolds number. The modelling approach is then used to design a feedback controller that uses the flaps to suppress the symmetry-breaking modes. The controller is successful, leading to a suppression of the bistability of the wake, with concomitant reductions in both lateral and streamwise forces. Importantly, the controller is found to be efficient, the actuator requiring only 24 % of the aerodynamic power saving. The controller therefore provides a key demonstration of efficient feedback control used to reduce the drag of a high-Reynolds-number three-dimensional bluff body. Furthermore, the results suggest that suppression of large-scale structures is a fundamentally efficient approach for bluff body drag reduction.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 692-702 ◽  
Author(s):  
Peter Hubral ◽  
Jorg Schleicher ◽  
Martin Tygel

Zero‐offset reflections resulting from point sources are often computed on a large scale in three‐dimensional (3-D) laterally inhomogeneous isotropic media with the help of ray theory. The geometrical‐spreading factor and the number of caustics that determine the shape of the reflected pulse are then generally obtained by integrating the so‐called dynamic ray‐tracing system down and up to the two‐way normal incidence ray. Assuming that this ray is already known, we show that one integration of the dynamic ray‐tracing system in a downward direction with only the initial condition of a point source at the earth’s surface is in fact sufficient to obtain both results. To establish the Fresnel zone of the zero‐offset reflection upon the reflector requires the same single downward integration. By performing a second downward integration (using the initial conditions of a plane wave at the earth’s surface) the complete Fresnel volume around the two‐way normal ray can be found. This should be known to ascertain the validity of the computed zero‐offset event. A careful analysis of the problem as performed here shows that round‐trip integrations of the dynamic ray‐tracing system following the actually propagating wavefront along the two‐way normal ray need never be considered. In fact some useful quantities related to the two‐way normal ray (e.g., the normal‐moveout velocity) require only one single integration in one specific direction only. Finally, a two‐point ray tracing for normal rays can be derived from one‐way dynamic ray tracing.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
B. M. Wilson ◽  
R. Mejia-Alvarez ◽  
K. P. Prestridge

Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing are studied by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A = 0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma = 1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N = 5 realizations at ten locations) and statistics (N = 100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. The enstrophy and strain show focused mixing activity in the spike regions.


Author(s):  
Aarthi Sekaran ◽  
Noushin Amini

Abstract The application of radially lobed nozzles has seen renewed challenges in the recent past with their roles in combustion chambers and passive flow control. The free jet flow from such nozzles has been studied for different flow conditions and compared to jets from round nozzles, verifying their improved mixing abilities. The precise mixing mechanisms of these nozzles are, however, not entirely understood and yet to be analyzed for typical jet parameters and excitation modes. The present study carries out three-dimensional Large Eddy Simulations (LES) of the flow from a tubular radially lobed nozzle to identify instability mechanisms and vortex dynamics that lead to enhanced mixing. The flow is studied at two Reynolds numbers of around 6000 and 75,000, based on the effective jet diameter. The low Reynolds number jet is compared to that from a round nozzle and experimental data to demonstrate changes in mixing mechanisms. The present simulations confirmed the presence of K-H-like modes and their evolution. The analysis also confirms the evolution of three distinct types of structures - the large-scale streamwise modes at the lobe crests, corresponding K-H structures at the troughs and an additional set of structures generated from the lobe walls. The higher Reynolds number simulations indicate changes in the mechanics with a subdued role of the lobe walls.


1998 ◽  
Vol 367 ◽  
pp. 255-289 ◽  
Author(s):  
ROBERT D. MOSER ◽  
MICHAEL M. ROGERS ◽  
DANIEL W. EWING

Direct numerical simulations of three time-developing turbulent plane wakes have been performed. Initial conditions for the simulations were obtained using two realizations of a direct simulation from a turbulent boundary layer at momentum-thickness Reynolds number 670. In addition, extra two-dimensional disturbances were added in two of the cases to mimic two-dimensional forcing. The wakes are allowed to evolve long enough to attain approximate self-similarity, although in the strongly forced case this self-similarity is of short duration. For all three flows, the mass-flux Reynolds number (equivalent to the momentum-thickness Reynolds number in spatially developing wakes) is 2000, which is high enough for a short k−5/3 range to be evident in the streamwise one-dimensional velocity spectra.The spreading rate, turbulence Reynolds number, and turbulence intensities all increase with forcing (by nearly an order of magnitude for the strongly forced case), with experimental data falling between the unforced and weakly forced cases. The simulation results are used in conjunction with a self-similar analysis of the Reynolds stress equations to develop scalings that approximately collapse the profiles from different wakes. Factors containing the wake spreading rate are required to bring profiles from different wakes into agreement. Part of the difference between the various cases is due to the increased level of spanwise-coherent (roughly two-dimensional) energy in the forced cases. Forcing also has a significant impact on flow structure, with the forced flows exhibiting more organized large-scale structures similar to those observed in transitional wakes.


Author(s):  
Pramod B. Salunkhe ◽  
Hui Tang ◽  
Yanhua Wu

This work describes the use of a synthetic jet (SJ) array for mild control of flow separation over a straight wing model. Experiments were performed in a subsonic wind tunnel to show improvement of the wing aerodynamic performance. A tomographic particle image velocimetry system was used to measure and analyze the three-dimensional flow-field with and without the SJ actuation. It was observed that, although the SJ array is relatively weak, it can still made impacts on the separated flow. After the SJ actuation, the large-scale vortex structures in the shear layer were broken into small discrete structures and the near-wall flow was substantially improved. Subsequently, Proper Orthogonal Decomposition (POD) analysis was also conducted and the effectiveness of the present SJ array was further discussed.


Sign in / Sign up

Export Citation Format

Share Document