Dynamo action in rapidly rotating Rayleigh–Bénard convection at infinite Prandtl number

2017 ◽  
Vol 825 ◽  
pp. 385-411 ◽  
Author(s):  
Fausto Cattaneo ◽  
David W. Hughes

In order better to understand the processes that lead to the generation of magnetic fields of finite amplitude, we study dynamo action driven by turbulent Boussinesq convection in a rapidly rotating system. In the limit of infinite Prandtl number (the ratio of viscous to thermal diffusion) the inertia term drops out of the momentum equation, which becomes linear in the velocity. This simplification allows a decomposition of the velocity into a thermal part driven by buoyancy, and a magnetic part driven by the Lorentz force. While the former velocity defines the kinematic dynamo problem responsible for the exponential growth of the magnetic field, the latter encodes the magnetic back reaction that leads to the eventual nonlinear saturation of the dynamo. We argue that two different types of solution should exist: weak solutions in which the saturated velocity remains close to the kinematic one, and strong solutions in which magnetic forces drive the system into a new strongly magnetised state that is radically different from the kinematic one. Indeed, we find both types of solutions numerically. Interestingly, we also find that, in our inertialess system, both types of solutions exist on the same subcritical branch of solutions bifurcating from the non-magnetic convective state, in contrast with the more traditional situation for systems with finite inertia in which weak and strong solutions are thought to exist on different branches. We find that for weak solutions, the force balance is the same as in the non-magnetic case, with the horizontal size of the convection varying as the one-third power of the Ekman number (the ratio of viscous to Coriolis forces), which gives rise to very small cells at small Ekman numbers (i.e. high rotation rates). In the strong solutions, magnetic forces become important and the convection develops on much larger horizontal scales. However, we note that even in the strong cases the solutions never properly satisfy Taylor’s constraint, and that viscous stresses continue to play a role. Finally, we discuss the relevance of our findings to the study of planetary dynamos in rapidly rotating systems such as the Earth.

2019 ◽  
Vol 879 ◽  
pp. 793-807
Author(s):  
David W. Hughes ◽  
Fausto Cattaneo

We study dynamo action in rotating, plane layer Boussinesq convection in the absence of inertia. This allows a decomposition of the velocity into a thermal part driven by buoyancy, and a magnetic part driven by the Lorentz force. We have identified three families of solutions, defined in terms of what is the dominant contribution to the velocity. In weak field dynamos the dominant contribution is the thermal component, in super strong field dynamos the dominant contribution is magnetic and in strong field dynamos the two components are comparable. For each of these solutions we investigate the force balance in the momentum equation to determine the relative importance of the viscous, buoyancy, Coriolis and magnetic forces. We do this by extracting the solenoidal part of the individual terms in the momentum equation, thereby removing their pressure contributions. This is numerically preferable to the more common practice of taking the curl of the momentum equation, which introduces an extra derivative. We find that, irrespective of the type of dynamo solution, the dynamics is controlled by the horizontal forces (in projection). Furthermore, in the progression from weak to strong to super strong dynamos, we find that the viscous forces in the thermal equation become negligible, thereby leading to a balance between buoyancy and Coriolis forces. On the other hand, no corresponding trend is observed in the magnetic part of the momentum equation: the viscous stresses always remain significant. This can be attributed to the different degrees of smoothness of the Coriolis and Lorentz forces, the latter having contributions from strong, filamentary structures. We discuss how our findings relate to dynamo solutions in which viscosity plays no role whatsoever – so-called Taylor states.


2010 ◽  
Vol 6 (S273) ◽  
pp. 141-147
Author(s):  
Rainer Arlt

AbstractThis review is an attempt to elucidate MHD phenomena relevant for stellar magnetic fields. The full MHD treatment of a star is a problem which is numerically too demanding. Mean-field dynamo models use an approximation of the dynamo action from the small-scale motions and deliver global magnetic modes which can be cyclic, stationary, axisymmetric, and non-axisymmetric. Due to the lack of a momentum equation, MHD instabilities are not visible in this picture. However, magnetic instabilities must set in as a result of growing magnetic fields and/or buoyancy. Instabilities deliver new timescales, saturation limits and topologies to the system probably providing a key to the complex activity features observed on stars.


1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


2006 ◽  
Vol 6 (3) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractWe prove the existence and uniqueness of strong solutions of a three dimensional system of globally modified Navier-Stokes equations. The flattening property is used to establish the existence of global V -attractors and a limiting argument is then used to obtain the existence of bounded entire weak solutions of the three dimensional Navier-Stokes equations with time independent forcing.


1958 ◽  
Vol 4 (3) ◽  
pp. 225-260 ◽  
Author(s):  
W. V. R. Malkus ◽  
G. Veronis

When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.


Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


1989 ◽  
Vol 12 ◽  
pp. 157-161 ◽  
Author(s):  
Vernon A. Squire

Movement of the sea-ice edge on short time-scales (<1 d) is due to a balance of forces between several mechanisms (wind stress, sea-surface tilt, internal ice stress, and Coriolis force) which are often comparable in magnitude. Other factors such as the force induced by partial reflection of short seas, internal gravity waves in the pycnocline, etc., may also contribute. Through the momentum equation, these mechanisms affect the dynamics of the ice edge. In this paper we suggest another mechanism which may have importance, namely, a radiation-stress contribution which derives from obliquely incident waves which are totally reflected from the ice edge by a process analogous to total internal reflection in optics. Such reflection generates both normal and shear forces at the ice edge, the former tending to compact the pack ice and the latter to shear the absolute edge. The effect is studied using some recent data collected during the Winter Weddell Sea Project 1986 in Antarctica, where it is found that the contribution to the force balance is significant. For thicker sea ice and icebergs acted upon by oblique seas, the radiation stress-induced force may outweigh more conventional terms in the momentum equation.


Sign in / Sign up

Export Citation Format

Share Document