Finite amplitude cellular convection

1958 ◽  
Vol 4 (3) ◽  
pp. 225-260 ◽  
Author(s):  
W. V. R. Malkus ◽  
G. Veronis

When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.

A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


Author(s):  
Gary A. Glatzmaier

This chapter describes a linear stability analysis (that is, solving for the critical Rayleigh number Ra and mode) that allows readers to check their linear codes against the analytic solution. For this linear analysis, each Fourier mode n can be considered a separate and independent problem. The question that needs to be addressed now is under what conditions—that is, what values of Ra, Prandtl number Pr, and aspect ratio a—will the amplitude of the linear solution grow with time for a given mode n. This is a linear stability problem. The chapter first introduces the linear equations before discussing the linear code and explaining how to find the critical Rayleigh number; in other words, the value of Ra for a and Pr that gives a solution that neither grows nor decays with time. It also shows how the linear stability problem can be solved using an analytic approach.


1987 ◽  
Vol 185 ◽  
pp. 205-234 ◽  
Author(s):  
R. W. Walden ◽  
Paul Kolodner ◽  
A. Passner ◽  
C. M. Surko

Heat-transport measurements are reported for thermal convection in a rectangular box of aspect’ ratio 10 x 5. Results are presented for Rayleigh numbers up to 35Rc, Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kc, where Rc and kc are the critical Rayleigh number and wavenumber for the onset of convection in a layer of infinite lateral extent. The measurements are in good agreement with a phenomenological model which combines the calculations of Nusselt number, as a function of Rayleigh number and roll wavenumber for two-dimensional convection in an infinite layer, with a nonlinear amplitude-equation model developed to account for sidewell attenuation. The appearance of bimodal convection increases the heat transport above that expected for simple parallel-roll convection.


1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


2020 ◽  
Author(s):  
Sebastian Giersch ◽  
Siegfried Raasch

<p>Dust devils are convective vortices with a vertical axis of rotation mainly characterized by a local minimum in pressure and a local maximum in vertical vorticity within the vortex core. They are made visible by entrained dust particles. That's why they occur primarily in dry and hot areas. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol and heat transport and thereby influence earth's radiation budget as well as boundary layer properties. Past efforts to quantify the aerosol or heat transport and to study dust devils' formation, maintenance, and statistics using large-eddy simulation (LES) as well as direct numerical simulation (DNS) have been of limited success. Therefore, this study aims to provide better statistical information about dust devil-like structures and to extend, prove or disprove existing theories about the development and maintenance of dust devils. Especially, the vortex strength measured through the pressure drop in the vortex core is regarded, which is, in past LES simulations, almost one order of magnitude smaller compared to the observed range of several hundreds Pascals. <br>So far, we are able to reproduce observed core pressures with LES of the convective boundary layer by using a high spatial resolution of 2m while considering a domain of 4km x 4km x 2km, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the vertices and branches of the cellular pattern and at lines of horizontal flow convergence above the centers of the strongly heated patches. The latter result is in contrast to some older observations in which vortices seemed to be created along the patch edges. Also further statistical properties, like lifetimes, diameters or frequency of occurrence, fit quite well in the observed range. Nevertheless, statistics of dust devils from LES face the general problem that they are highly influenced by the used grid spacing and thereby by the structures that can be explicitly resolved. For example, the near surface layer, which plays a major role for the vortex development, is poorly resolved and turbulent processes in this layer are highly parameterized. DNS would overcome this problem. Therefore, dust devil-like structures are also investigated with DNS by simulating laboratory-like Rayleigh-Bénard convection with Rayleigh numbers up to 10<sup>12</sup>. Such high Rayleigh numbers have never been used in DNS studies of dust devils. The focus is on the vortex formation dependence on the used Rayleigh number and aspect ratio. First results of the laboratory-like Rayleigh-Bénard convection simulated with DNS confirm the existence of dust devil-like structures also on small scales with much lower Rayleigh numbers than in the atmosphere. <br>In a next step, detailed statistics of dust devil-like structures in Rayleigh-Bénard convection will be derived focusing on Rayleigh number and aspect ratio dependencies. Afterwards, results will be compared to LES simulations of dust devils and experimental data.</p>


Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from a wide isothermal plate which has a wavy surface, i.e., has a surface which periodically rises and falls, has been numerically studied. The main purpose of the study was to examine the effect of the surface waviness on the conditions under which transition from laminar to turbulent flow occurred and to study the effect of the surface waviness on the heat transfer rate. The surface waves, which have a saw-tooth cross-sectional shape, are normal to the direction of flow over the surface and have a relatively small amplitude. The range of Rayleigh numbers considered in the present study extends from values that for a non-wavy plate would be associated with laminar flow to values that would be associated with fully turbulent flow. The flow has been assumed to be steady and fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being treated by means of the Boussinesq type approximation. A standard k-epsilon turbulence model with full account being taken of the effects of the buoyancy forces has been used in obtaining the solution. The solution has been obtained using the commercial CFD solver FLUENT. The solution has the following parameters: the Rayleigh number based on the plate height, the Prandtl number, the dimensionless amplitude of the surface waviness, and the dimensionless pitch of the surface waviness. Results have been obtained for a Prandtl number of 0.7 and for a single dimensionless pitch value for Rayleigh numbers between approximately 106 and 1012. The effects of Rayleigh number and dimensionless amplitude on the mean heat transfer rate have been studied. It is convenient in presenting the results to introduce two mean heat transfer rates, one based on the total surface area and the other based on the projected frontal area of the surface.


This paper describes an experimental investigation of heat transfer by free convection of a fluid in a heated vertical tube, sealed at its lower end. Heated fluid adjacent to the wall is discharged from the open end into a suitably cooled large reservoir, while a central core of cool fluid is continuously drawn into the tube by way of replacement. The system constitutes an unusual case of natural convection because the two streams of fluid, moving in opposite directions, are compelled to create their own internal boundary. Such an arrangement forms a static simulation of the Schmidt system (1951) for cooling high-temperature gas turbine blades, where sealed radial passages in the blades communicate with a reservoir in the rotor drum, and large centrifugal accelerations replace that due to gravity in the static system. The use of a scaled-up static tube in large measure compensates for the relatively small gravitational acceleration, when determining the working range of Rayleigh numbers, in this case from 10 7 to 10 13 . These are based on tube length, the fluid property values being referred to tube-wall temperature. Separate assessments are made of the effect of fluid Prandtl number (covering values from 7600 to 0·69) and tube length radius ratio (ranging from 7·5 to 47·5). In laminar flow the former is not found to be significant, but the quotient of the Rayleigh number (based on radius) and tube length-radius ratio determines the ranges of three laminar flow régimes. High values of the quotient correspond to 'boundary-layer flow’ and greatest heat transfer. This is followed first by ‘impeded non-similarity flow’ and then by ‘impeded similarity flow’ as the quotient becomes smaller, where the two streams of fluid mingle. These findings are in close agreement with theoretical prediction (Lighthill 1953). Turbulence arises in two ways. For Prandtl numbers near unity, transition occurs during the laminar impeded-flow régimes, resulting in a mixing effect and reduced heat transfer. This is predicted by Lighthill, but his discussion of turbulent flow is restricted to a Prandtl number of unity. For larger Prandtl numbers, transition takes place during laminar boundary-layer flow, yielding a conventional turbulent boundary-layer régime with increased heat transfer. The mean transitional Grashof numbers (based on radius) are in the range 10 4.4 to 10 4.6 ; they compare favourably with a pre­dicted range of from 10 4.0 to 10 4.3 . The tendency for the cool entering fluid to become turbulent renders turbulent boundary-layer flow potentially unstable. Both modes of transition eventually lead to a stable ‘fully mixed' régime where the two turbulent streams mix. This causes reduced circulation and heat transfer, the extent of the reduction varying directly with length-radius ratio and inversely with Prandtl number. The régime was predicted by Lighthill, but there are considerable dis­crepancies between estimated and experimental heat-transfer rates, and in the duration of the régime. In practice it appears to persist indefinitely, whereas Lighthill forecasts its replace­ment at high Rayleigh numbers by a stable boundary-layer flow. Empirical correlations show that fully mixed flow yields optimum heat transfer at a length-radius ratio, which is determined by the Rayleigh number. The suitability of the Schmidt system for blade cooling is briefly discussed in the light of the investigation.


1976 ◽  
Vol 73 (3) ◽  
pp. 445-451 ◽  
Author(s):  
Robert R. Long

A theory is developed for the dependence of the Nusselt number on the Rayleigh number in turbulent thermal convection in horizontal fluid layers. The theory is based on a number of assumptions regarding the behaviour in the molecular boundary layers and on the assumption of a buoyancy-defect law in the interior analogous to the velocity-defect law in flow in pipes and channels. The theory involves an unknown constant exponentsand two unknown functions of the Prandtl number. For eithers= ½ ors= 1/3, corresponding to two different theories of thermal convection, and for a given Prandtl number, constants can be chosen to give excellent agreement with existing data over nearly the whole explored range of Rayleigh numbers in the turbulent case. Unfortunately, comparisons with experiment do not permit a definite choice ofs, but consistency with the chosen form of the buoyancy-defect law seems to suggests= 1/3, corresponding to similarity theory.


1980 ◽  
Vol 96 (3) ◽  
pp. 515-583 ◽  
Author(s):  
Gary T. Jarvis ◽  
Dan P. Mckenzie

An approximate set of equations is derived for a compressible liquid of infinite Prandtl number. These are referred to as the anelastic-liquid equations. The approximation requires the product of absolute temperature and volume coefficient of thermal expansion to be small compared to one. A single parameter defined as the ratio of the depth of the convecting layer,d, to the temperature scale height of the liquid,HT, governs the importance of the non-Boussinesq effects of compressibility, viscous dissipation, variable adiabatic temperature gradients and non-hydrostatic pressure gradients. Whend/HT[Lt ] 1 the Boussinesq equations result, but whend/HTisO(1) the non-Boussinesq terms become important. Using a time-dependent numerical model, the anelastic-liquid equations are solved in two dimensions and a systematic investigation of compressible convection is presented in whichd/HTis varied from 0·1 to 1·5. Both marginal stability and finite-amplitude convection are studied. Ford/HT[les ] 1·0 the effect of density variations is primarily geometric; descending parcels of liquid contract and ascending parcels expand, resulting in an increase in vorticity with depth. Whend/HT> 1·0 the density stratification significantly stabilizes the lower regions of the marginal state solutions. At all values ofd/HT[ges ] 0·25, an adiabatic temperature gradient proportional to temperature has a noticeable stabilizing effect on the lower regions. Ford/HT[ges ] 0·5, marginal solutions are completely stabilized at the bottom of the layer and penetrative convection occurs for a finite range of supercritical Rayleigh numbers. In the finite-amplitude solutions adiabatic heating and cooling produces an isentropic central region. Viscous dissipation acts to redistribute buoyancy sources and intense frictional heating influences flow solutions locally in a time-dependent manner. The ratio of the total viscous heating in the convecting system, ϕ, to the heat flux across the upper surface,Fu, has an upper limit equal tod/HT. This limit is achieved at high Rayleigh numbers, when heating is entirely from below, and, for sufficiently large values ofd/HT, Φ/Fuis greater than 1·00.


The local nonlinear stability of thermal convection in fluid-saturated porous media, subjected to an adverse temperature gradient, is investigated. The critical Rayleigh number at the onset of convection and the corresponding heat transfer are determined. An approximate analytical method is presented to determine the form and amplitude of convection. To facilitate the determination of the physically preferred cell pattern, a detailed study of both two- and three-dimensional motions is made and a very good agreement with available experimental data is found. The finite-amplitude effects on the horizontal wavenumber, and the effect of the Prandtl number on the motion are discussed in detail. We find that, when the Rayleigh number is just greater than the critical value, two dimensional motion is more likely than three-dimensional motion, and the heat transport is shown to have two regions for n =1. In particular, it is shown that optimum heat transport occurs for a mixed horizontal plan form formed by the linear combination of general rectangular and square cells. Since an infinite number of steady-state finite-amplitude solutions exist for Rayleigh numbers greater than the critical number A c * , a relative stability criterion is discussed th at selects the realized solution as that having the maximum mean-square temperature gradient.


Sign in / Sign up

Export Citation Format

Share Document