scholarly journals A multifractal model for the momentum transfer process in wall-bounded flows

2017 ◽  
Vol 824 ◽  
Author(s):  
X. I. A. Yang ◽  
A. Lozano-Durán

The cascading process of turbulent kinetic energy from large-scale fluid motions to small-scale and lesser-scale fluid motions in isotropic turbulence may be modelled as a hierarchical random multiplicative process according to the multifractal formalism. In this work, we show that the same formalism might also be used to model the cascading process of momentum in wall-bounded turbulent flows. However, instead of being a multiplicative process, the momentum cascade process is additive. The proposed multifractal model is used for describing the flow kinematics of the low-pass filtered streamwise wall-shear stress fluctuation $\unicode[STIX]{x1D70F}_{l}^{\prime }$, where $l$ is the filtering length scale. According to the multifractal formalism, $\langle {\unicode[STIX]{x1D70F}^{\prime }}^{2}\rangle \sim \log (Re_{\unicode[STIX]{x1D70F}})$ and $\langle \exp (p\unicode[STIX]{x1D70F}_{l}^{\prime })\rangle \sim (L/l)^{\unicode[STIX]{x1D701}_{p}}$ in the log-region, where $Re_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number, $p$ is a real number, $L$ is an outer length scale and $\unicode[STIX]{x1D701}_{p}$ is the anomalous exponent of the momentum cascade. These scalings are supported by the data from a direct numerical simulation of channel flow at $Re_{\unicode[STIX]{x1D70F}}=4200$.

1992 ◽  
Vol 236 ◽  
pp. 281-318 ◽  
Author(s):  
J. C. H. Fung ◽  
J. C. R. Hunt ◽  
N. A. Malik ◽  
R. J. Perkins

The velocity field of homogeneous isotropic turbulence is simulated by a large number (38–1200) of random Fourier modes varying in space and time over a large number (> 100) of realizations. They are chosen so that the flow field has certain properties, namely (i) it satisfies continuity, (ii) the two-point Eulerian spatial spectra have a known form (e.g. the Kolmogorov inertial subrange), (iii) the time dependence is modelled by dividing the turbulence into large- and small-scales eddies, and by assuming that the large eddies advect the small eddies which also decorrelate as they are advected, (iv) the amplitudes of the large- and small-scale Fourier modes are each statistically independent and each Gaussian. The structure of the velocity field is found to be similar to that computed by direct numerical simulation with the same spectrum, although this simulation underestimates the lengths of tubes of intense vorticity.Some new results and concepts have been obtained using this kinematic simulation: (a) for the inertial subrange (which cannot yet be simulated by other means) the simulation confirms the form of the Eulerian frequency spectrum $\phi^{\rm E}_{11} = C^{\rm E}\epsilon^{\frac{2}{3}}U^{\frac{2}{3}}_0\omega^{-\frac{5}{3}}$, where ε,U0,ω are the rate of energy dissipation per unit mass, large-scale r.m.s. velocity, and frequency. For isotropic Gaussian large-scale turbulence at very high Reynolds number, CE ≈ 0.78, which is close to the computed value of 0.82; (b) for an observer moving with the large eddies the ‘Eulerian—Lagrangian’ spectrum is ϕEL11 = CELεω−2, where CEL ≈ 0.73; (c) for an observer moving with a fluid particle the Lagrangian spectrum ϕL11 = CLεω−2, where CL ≈ 0.8, a value consistent with the atmospheric turbulence measurements by Hanna (1981) and approximately equal to CEL; (d) the mean-square relative displacement of a pair of particles 〈Δ2〉 tends to the Richardson (1926) and Obukhov (1941) form 〈Δ2〉 = GΔεt3, provided that the subrange extends over four decades in energy, and a suitable origin is chosen for the time t. The constant GΔ is computed and is equal to 0.1 (which is close to Tatarski's 1960 estimate of 0.06); (e) difference statistics (i.e. displacement from the initial trajectory) of single particles are also calculated. The exact result that Y2 = GYεt3 with GY = 2πCL is approximately confirmed (although it requires an even larger inertial subrange than that for 〈Δ2〉). It is found that the ratio [Rscr ]G = 2〈Y2〉/〈Δ2〉≈ 100, whereas in previous estimates [Rscr ]G≈ 1, because for much of the time pairs of particles move together around vortical regions and only separate for the proportion of the time (of O(fc)) they spend in straining regions where streamlines diverge. It is estimated that [Rscr ]G ≈ O(fc−3). Thus relative diffusion is both a ‘structural’ (or ‘topological’) process as well as an intermittent inverse cascade process determined by increasing eddy scales as the particles separate; (f) statistics of large-scale turbulence are also computed, including the Lagrangian timescale, the pressure spectra and correlations, and these agree with predictions of Batchelor (1951), Hinzc (1975) and George et al. (1984).


2015 ◽  
Vol 786 ◽  
pp. 234-252 ◽  
Author(s):  
S. C. C. Bailey ◽  
B. M. Witte

Well-resolved measurements of the small-scale dissipation statistics within turbulent channel flow are reported for a range of Reynolds numbers from $Re_{{\it\tau}}\approx 500$ to 4000. In this flow, the local large-scale Reynolds number based on the longitudinal integral length scale is found to poorly describe the Reynolds number dependence of the small-scale statistics. When a length scale based on Townsend’s attached-eddy hypothesis is used to define the local large-scale Reynolds number, the Reynolds number scaling behaviour was found to be more consistent with that observed in homogeneous, isotropic turbulence. The Reynolds number scaling of the dissipation moments up to the sixth moment was examined and the results were found to be in good agreement with predicted scaling behaviour (Schumacher et al., Proc. Natl Acad. Sci. USA, vol. 111, 2014, pp. 10961–10965). The probability density functions of the local dissipation scales (Yakhot, Physica D, vol. 215 (2), 2006, pp. 166–174) were also determined and, when the revised local large-scale Reynolds number is used for normalization, provide support for the existence of a universal distribution which scales differently for inner and outer regions.


2018 ◽  
Vol 852 ◽  
pp. 641-662 ◽  
Author(s):  
M. F. Howland ◽  
X. I. A. Yang

In a turbulent flow, small- and large-scale fluid motions are coupled. In this work, we investigate the small-scale response to large-scale fluctuations in turbulent flows and discuss the implications on large eddy simulation (LES) wall modelling. The interscale interaction in wall-bounded flows was previously parameterized in the predictive inner–outer (PIO) model, where the amplitude of the small scales responds linearly to the large-scale fluctuations. While this assumed linearity is valid in the viscous sublayer, it is an insufficient approximation of the true interscale interaction in wall-normal distances within the buffer layer and above. Within these regions, a piecewise linear response function (piecewise with respect to large-scale fluctuations being positive or negative) appears to be more appropriate. In addition to proposing a new response function, we relate the amplitude modulation process to the Townsend attached eddy hypothesis. This connection allows us to make theoretical predictions on the model parameters within the PIO model. We use these parameters to apply the PIO model to wall-modelled LES. Further, we present empirical evidence of amplitude modulation in isotropic turbulence. The evidence suggests that the existence of nonlinear interscale interactions in the form of amplitude modulation does not rely on the presence of a non-penetrating boundary, but on the presence of a range of viscosity-dominated scales and a range of inertial-dominated scales.


Author(s):  
Yiannis Andreopoulos ◽  
Amir H. Danesh-Yazdi ◽  
Oleg Goushcha ◽  
Niell Elvin

Turbulent flows carry mechanical energy distributed over a range of temporal and spatial scales and their interaction with a thin immersed piezoelectric beam results in a strain field which generates electrical charge. This energy harvesting method can be used for developing self-powered electronic devices such as flow sensors. In the present experimental work, various energy harvesters were placed in a turbulent boundary layer or inside a decaying flow field of homogeneous and isotropic turbulence. The role of large instantaneous turbulent structures in this rather complex fluid-structure interaction is discussed in interpreting the electrical output results. The forces acting on the vibrating beams have been measured dynamically and a theory has been developed which incorporates the effects of mean local velocity, turbulence intensity, the relative size of the beam’s length to the integral length scale of turbulence, the structural properties of the beam and the electrical properties of the active piezoelectric layer to provide reasonable estimates of the mean electrical power output. Experiments have been carried out in which these fluidic harvesters are immersed first in inhomogeneous turbulence like that encountered in boundary layers developing over solid walls and homogeneous and isotopic turbulence for which a simplified analytical description exists. It was found that there is a non-linear effect of turbulence length scales on the power output of the fluidic harvesters.


1997 ◽  
Vol 163 ◽  
pp. 190-200
Author(s):  
Christopher A. Tout

AbstractWe review those processes associated with accretion discs that are probably influenced by magnetic fields, specifically, accretiondisc viscosity, energy dissipation and jet formation. We consider how magnetic instabilities in the disc can lead to a self-sustaining dynamical dynamo and how this is manifested as magnetohydrodynamic turbulence in numerical simulations. We show that currently these models do not fit with observational constraints imposed by dwarf-nova outbursts. We also show that the drop in ionisation fraction does not lead to the apparently necessary drop in viscosity in quiescent cataclysmic variable discs. Large-scale magnetic fields are required to launch and collimate jets form discs. We describe an inverse cascade process that can construct sufficient large-scale field from small-scale field generated by a dynamo.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


2003 ◽  
Vol 56 (6) ◽  
pp. 615-632 ◽  
Author(s):  
RA Antonia ◽  
P Orlandi

Previous reviews of the behavior of passive scalars which are convected and mixed by turbulent flows have focused primarily on the case when the Prandtl number Pr, or more generally, the Schmidt number Sc is around 1. The present review considers the extra effects which arise when Sc differs from 1. It focuses mainly on information obtained from direct numerical simulations of homogeneous isotropic turbulence which either decays or is maintained in steady state. The first case is of interest since it has attracted significant theoretical attention and can be related to decaying turbulence downstream of a grid. Topics covered in the review include spectra and structure functions of the scalar, the topology and isotropy of the small-scale scalar field, as well as the correlation between the fluctuating rate of strain and the scalar dissipation rate. In each case, the emphasis is on the dependence with respect to Sc. There are as yet unexplained differences between results on forced and unforced simulations of homogeneous isotropic turbulence. There are 144 references cited in this review article.


2000 ◽  
Vol 1 (2) ◽  
pp. 209-227 ◽  
Author(s):  
S Menon

Next-generation gas turbine and internal combustion engines are required to reduce pollutant emissions significantly and also to be fuel efficient. Accurate prediction of pollutant formation requires proper resolution of the spatio-temporal evolution of the unsteady mixing and combustion processes. Since conventional steady state methods are not able to deal with these features, methodology based on large-eddy simulations (LESs) is becoming a viable choice to study unsteady reacting flows. This paper describes a new LES methodology developed recently that has demonstrated a capability to simulate reacting turbulent flows accurately. A key feature of this new approach is the manner in which small-scale turbulent mixing and combustion processes are simulated. This feature allows proper characterization of the effects of both large-scale convection and small-scale mixing on the scalar processes, thereby providing a more accurate prediction of chemical reaction effects. LESs of high Reynolds number premixed flames in the flamelet regime and in the distributed reaction regime are used to describe the ability of the new subgrid combustion model.


Sign in / Sign up

Export Citation Format

Share Document