Effects of surface roughness on a separating turbulent boundary layer

2018 ◽  
Vol 841 ◽  
pp. 552-580 ◽  
Author(s):  
Wen Wu ◽  
Ugo Piomelli

Separating turbulent boundary layers over smooth and rough flat plates are studied by large-eddy simulations. A suction–blowing velocity distribution imposed at the top boundary of the computation domain produces an adverse-to-favourable pressure gradient and creates a closed separation bubble. The Reynolds number based on the momentum thickness and the free-stream velocity before the pressure gradient begins is 2500. Virtual sand grain roughness in the fully rough regime is modelled by an immersed boundary method. Compared with a smooth-wall case, streamline detachment occurs earlier and the separation region is substantially larger for the rough-wall case, due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag, so that the point where the wall stress vanishes does not coincide with the detachment of the flow from the surface. A thin reversed-flow region is formed below the roughness crest; the presence of recirculation regions behind each roughness element also affects the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average velocity can still be positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE) in the rough-wall case, the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes.

Author(s):  
Alexander Theiss ◽  
Sascha Leyh ◽  
Stefan Hein

Laminar-turbulent transition caused by modal disturbance growth in the wake flow of isolated roughness elements on blunt re-entry capsules is studied numerically at typical cold hypersonic wind-tunnel conditions. Two fundamentally different heat shield shapes are considered. On the sphere-cone forebody the wake flow of the roughness is exposed to an adverse pressure gradient, whereas the spherical heat shield exhibits a strongly favorable pressure gradient. The pressure gradient effects on the development of the stationary wake flow and its modal instability characteristics are discussed for various heights and diameters of the cylindrical roughness element. Regions of increased shear develop in its wake, which persist longer in the adverse pressure gradient case. Consequently, the results of spatial two-dimensional eigenvalue analyses reveal that the unstable wake-flow region extends much further downstream and the wake-mode instabilities are considerably more amplified. The disturbance kinetic energy production terms are used to assess the contributions of the different shear-layer regions to the mode growth and its dependence on the pressure gradient.


Author(s):  
Mark P. Simens ◽  
Ayse G. Gungor

Roughness effects on a laminar separation bubble, formed on a flat plate boundary layer due to a strong adverse pressure gradient similar to those encountered on the suction side of typical low-pressure turbine blades, are studied by direct numerical simulation. The discrete roughness elements that have a uniform height in the spanwise direction and ones that have a height that is a function of the spanwise coordinate are modeled using the immersed boundary method. The location and the size of the roughness element are varied to study the effects on boundary development and turbulent transition, and it was found that the size of the separation bubble can be controlled by positioning the roughness element away from the separation bubble. Roughnesses that have a height that varies in a periodic manner in the spanwise direction have a big influence on the separation bubble. The separation point is moved downstream due to the accelerated flow in the openings in the roughness element, which also prevents the formation of the recirculation region after the roughness element. The reattachment point is moved upstream, while the height of the separation bubble is reduced. These numerical experiments indicate that laminar separation and turbulent transition, are mainly affected by the type, the height, and the location of the roughness element. Finally a comparison between the individual influence of wakes and roughness on the separation is made. It is found that the transition of the separated boundary layer with wakes occurs at almost the same streamwise location as that induced by the three-dimensional roughness element.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Xiaofei Liu ◽  
Kun Luo ◽  
Jianren Fan

Direct numerical simulations (DNS) are performed to investigate the transient growth of a steady disturbance induced by a numerically generated Gaussian rough wall in a laminar boundary layer. In the calculation of the interaction between the rough wall and the fluid, the multiple direct force and immersed boundary method (MDF/IBM) are adopted. The evolution of the streak structures and the energy of the disturbances generated by the rough wall are presented. A similar evolution into an almost sinusoidal modulation for the cylindrical roughness element is found for the current irregular rough wall, and the disturbance energy also undergoes the classical transient growth mode. Moreover, the influences of the skewness, kurtosis, and correlation length on the evolution of spanwise harmonics are also analyzed. The results show that the effects of skewness and kurtosis are on the distribution of energy among the wavelengths and the subsequent growth processes, while the wavelengths of the harmonics are linked to both the streamwise and spanwise correlation lengths of the rough wall.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.


2021 ◽  
Author(s):  
Brandon Arthur Lobo ◽  
Alois Peter Schaffarczyk ◽  
Michael Breuer

Abstract. The objective of the present paper is to investigate the transition scenario of the flow around a typical section of a wind turbine blade exposed to different levels of inflow turbulence. As a first step towards this objective, a rather low Reynolds number of Rec = 105 is studied at a fixed angle of attack but under five different turbulence intensities (TI) up to TI = 11.2 %. Using wall-resolved large-eddy simulations combined with an inflow procedure relying on synthetically generated turbulence and a source-term formulation for its injection within the computational domain, relevant flow features such as the separation bubble, inflectional instabilities and streaks can be investigated. The study shows that the transition scenario significantly changes with rising TI, where the influence of inflectional instabilities due to an adverse pressure gradient decreases, while the influence of streaks increases resulting in a shift from the classical scenario of natural transition to bypass transition. The primary instability mechanism in the separation bubble is found to be inflectional and its origin is traced back to the region upstream of the separation. Thus, the inviscid inflectional instability of the separated shear layer is an extension of the instability of the attached adverse pressure gradient boundary layer observed upstream. The boundary layer is evaluated to be receptive to external disturbances such that the initial energy within the boundary layer is proportional to the square of the turbulence intensity. Boundary layer streaks were found to influence the instantaneous separation location depending on their orientation. A varicose mode of instability is observed on the overlap of the leading edge of a high-speed streak with the trailing edge of a low-speed streak. The critical amplitude of this instability was analyzed to be about 32 % of the free-stream velocity.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Mark P. Simens ◽  
Ayse G. Gungor

Roughness effects on a laminar separation bubble, formed on a flat plate boundary layer due to a strong adverse pressure gradient similar to those encountered on the suction side of typical low-pressure turbine blades, are studied by direct numerical simulation. The discrete roughness elements that have a uniform height in the spanwise direction and ones that have a height that is a function of the spanwise coordinate are modeled using the immersed boundary method. The location and the size of the roughness element are varied in order to study the effects on boundary development and turbulent transition; it was found that the size of the separation bubble can be controlled by positioning the roughness element away from the separation bubble. Roughnesses that have a height that varies in a periodic manner in the spanwise direction have a great influence on the separation bubble. The separation point is moved downstream due to the accelerated flow in the openings in the roughness element, which also prevents the formation of the recirculation region after the roughness element. The reattachment point is moved upstream, while the height of the separation bubble is reduced. These numerical experiments indicate that laminar separation and turbulent transition are mainly affected by the type, height, and location of the roughness element. Finally, a comparison between the individual influence of wakes and roughness on the separation is made. It is found that the transition of the separated boundary layer with wakes occurs at almost the same streamwise location as that induced by the three-dimensional roughness element.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


Author(s):  
Lin Sun ◽  
Sanjay R. Mathur ◽  
Jayathi Y. Murthy

A numerical method is developed for solving the 3D, unsteady, incompressible flows with immersed moving solids of arbitrary geometrical complexity. A co-located (non-staggered) finite volume method is employed to solve the Navier-Stokes governing equations for flow region using arbitrary convex polyhedral meshes. The solid region is represented by a set of material points with known position and velocity. Faces in the flow region located in the immediate vicinity of the solid body are marked as immersed boundary (IB) faces. At every instant in time, the influence of the body on the flow is accounted for by reconstructing implicitly the velocity the IB faces from a stencil of fluid cells and solid material points. Specific numerical issues related to the non-staggered formulation are addressed, including the specification of face mass fluxes, and corrections to the continuity equation to ensure overall mass balance. Incorporation of this immersed boundary technique within the framework of the SIMPLE algorithm is described. Canonical test cases of laminar flow around stationary and moving spheres and cylinders are used to verify the implementation. Mesh convergence tests are carried out. The simulation results are shown to agree well with experiments for the case of micro-cantilevers vibrating in a viscous fluid.


Author(s):  
H. Perez-Blanco ◽  
Robert Van Dyken ◽  
Aaron Byerley ◽  
Tom McLaughlin

Separation bubbles in high-camber blades under part-load conditions have been addressed via continuous and pulsed jets, and also via plasma actuators. Numerous passive techniques have been employed as well. In this type of blades, the laminar boundary layer cannot overcome the adverse pressure gradient arising along the suction side, resulting on a separation bubble. When separation is abated, a common explanation is that kinetic energy added to the laminar boundary layer speeds up its transition to turbulent. In the present study, a plasma actuator installed in the trailing edge (i.e. “wake filling configuration”) of a cascade blade is used to excite the flow in pulsed and continuous ways. The pulsed excitation can be directed to the frequencies of the large coherent structures (LCS) of the flow, as obtained via a hot-film anemometer, or to much higher frequencies present in the suction-side boundary layer, as given in the literature. It is found that pulsed frequencies much higher than that of LCS reduce losses and improve turning angles further than frequencies close to those of LCS. With the plasma actuator 50% on time, good loss abatement is obtained. Larger “on time” values yield improvements, but with decreasing returns. Continuous high-frequency activation results in the largest loss reduction, at increased power cost. The effectiveness of high frequencies may be due to separation abatement via boundary layer excitation into transition, or may simply be due to the creation of a favorable pressure gradient that averts separation as the actuator ejects fluid downstream. Both possibilities are discussed in light of the experimental evidence.


Sign in / Sign up

Export Citation Format

Share Document