scholarly journals Pressure gradient effects on wake-flow instabilities behind isolated roughness elements on re-entry capsules

Author(s):  
Alexander Theiss ◽  
Sascha Leyh ◽  
Stefan Hein

Laminar-turbulent transition caused by modal disturbance growth in the wake flow of isolated roughness elements on blunt re-entry capsules is studied numerically at typical cold hypersonic wind-tunnel conditions. Two fundamentally different heat shield shapes are considered. On the sphere-cone forebody the wake flow of the roughness is exposed to an adverse pressure gradient, whereas the spherical heat shield exhibits a strongly favorable pressure gradient. The pressure gradient effects on the development of the stationary wake flow and its modal instability characteristics are discussed for various heights and diameters of the cylindrical roughness element. Regions of increased shear develop in its wake, which persist longer in the adverse pressure gradient case. Consequently, the results of spatial two-dimensional eigenvalue analyses reveal that the unstable wake-flow region extends much further downstream and the wake-mode instabilities are considerably more amplified. The disturbance kinetic energy production terms are used to assess the contributions of the different shear-layer regions to the mode growth and its dependence on the pressure gradient.

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.


Author(s):  
Stepan Tolkachev ◽  
Victor Kozlov ◽  
Valeriya Kaprilevskaya

In this article, the results of research about stationary and secondary disturbances development behind the localized and two-dimensional roughness elements are presented. It is shown that the two-dimensional roughness element has a destabilizing effect on the disturbances induced by the three-dimensional roughness element lying upstream. In this case, the two-dimensional roughness element causes the appearance of stationary structures, and then secondary perturbations, whose frequency range lies lower than in the case of the stationary vortices excited by a three-dimensional roughness element.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


1984 ◽  
Vol 106 (2) ◽  
pp. 202-210 ◽  
Author(s):  
R. J. Hansen ◽  
J. G. Hoyt

An experimental study of the laminar-to-turbulent transition and resulting hydrodynamic forces on a body of revolution with a long, favorable pressure gradient forebody (i.e., where pressure is dropping and the flow accelerating) is reported. Over a substantial range of body velocity and angle of attack the favorable pressure gradient is shown to postpone transition to the point of laminar separation, and this extended laminar region results in a much lower hydrodynamic drag than is characteristic of an all-turbulent body. The intermittency of the boundary layer and the propagation characteristics of turbulent spots in the extended favorable pressure gradient region are quantified by hot film probes mounted flush with the body surface. The sensitivity of the boundary layer transition to three-dimensional surface roughness elements located in tandem (along a streamline) is also quantified. A number of such elements in tandem causes transition at a lower Reynolds number than would a single element of the same size, this effect becoming more pronounced with increasing number of roughness elements and decreasing space between them.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012203
Author(s):  
E K Guseva ◽  
D A Nikulin ◽  
A K Travin ◽  
R Radespiel ◽  
P Scholz

Abstract Results are presented of a series of RANS computations aimed at creating a new experimental flow model of a curved turbulent wake evolving under adverse pressure gradient. In the course of the computations, key geometric parameters of the model (the angle of attack of a flat plate generating the wake and the shape and the angles of attack of liner foils creating the pressure gradient) were varied in a wide range. The purpose was to find the parameters ensuring desirable features of the flow, namely, a considerable wake curvature and its strong deceleration leading to formation of a large stagnation or even a reversal flow region, on the one hand, and no flow separation either from the flat plate or from the surfaces of the liner foils, on the other hand. As a result, the design satisfying all these demands has been found. This design will be implemented and studied in the framework of recently launched joint German-Russian project “Complex Wake Flows” which presents a continuation of an earlier similar project devoted to symmetric wakes.


Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

The present work, a continuation of a series of investigations on the aerodynamics of aggressive inter-turbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out for varying duct mean rise angles and outlet-to-inlet area ratio while keeping the duct length-to-inlet height ratio, Reynolds number and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the counter-rotating vortices and boundary layer separation in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing’s first bend whereas the duct area ratio mainly governed the second bend’s static pressure rise. The combination of upstream wake flow and the first bend’s adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing’s first bend and moved farther upstream. At high area ratios, a 2-D separation appeared on the casing. Pressure loss penalties increased significantly with increasing duct mean rise angle and area ratio.


1967 ◽  
Vol 71 (673) ◽  
pp. 44-46 ◽  
Author(s):  
J. F. Nash ◽  
P. Bradshaw

SummaryA simplified analysis indicates that the increase in profile drag of an aerofoil due to an isolated roughness element is, in general, different from the drag of the element measured on a flat plate with the same free-stream velocity. This “magnification” effect is caused chiefly by the effect of the pressure gradients on the boundary layer downstream of the roughness element.The degree of magnification is not closely approximated by the ratio of local to free-stream dynamic pressure and, in many typical cases, the contribution to the drag due to roughness elements may be seriously under-estimated in this way.Measurements of the effect of the initial boundary-layer thickness on the subsequent development of a turbulent boundary-layer in an adverse pressure gradient support the theoretical conclusions.


2018 ◽  
Vol 841 ◽  
pp. 552-580 ◽  
Author(s):  
Wen Wu ◽  
Ugo Piomelli

Separating turbulent boundary layers over smooth and rough flat plates are studied by large-eddy simulations. A suction–blowing velocity distribution imposed at the top boundary of the computation domain produces an adverse-to-favourable pressure gradient and creates a closed separation bubble. The Reynolds number based on the momentum thickness and the free-stream velocity before the pressure gradient begins is 2500. Virtual sand grain roughness in the fully rough regime is modelled by an immersed boundary method. Compared with a smooth-wall case, streamline detachment occurs earlier and the separation region is substantially larger for the rough-wall case, due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag, so that the point where the wall stress vanishes does not coincide with the detachment of the flow from the surface. A thin reversed-flow region is formed below the roughness crest; the presence of recirculation regions behind each roughness element also affects the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average velocity can still be positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE) in the rough-wall case, the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes.


Sign in / Sign up

Export Citation Format

Share Document