scholarly journals Computational Analysis of Active and Passive Flow Control for Backward Facing Step

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.

Author(s):  
Chloé Mimeau ◽  
Iraj Mortazavi ◽  
Georges-Henri Cottet

In this work, a hybrid particle-penalization technique is proposed to achieve accurate and efficient computations of 3D incompressible flows past bluff bodies. This immersed boundary approach indeed maintains the efficiency and the robustness of vortex methods and allows to easily model complex media, like solid-fluid-porous ones, without prescribing any boundary condition. In this paper, the method is applied to implement porous coatings on a hemisphere in order to passively control the flow dynamics.


Author(s):  
Chloé Mimeau ◽  
Iraj Mortazavi ◽  
Georges-Henri Cottet

In this work, a coupling of vortex methods with penalization methods is proposed in order to accurately and easily handle solid-fluid-porous media. This immersed boundary approach indeed maintains the efficiency and the robustness of vortex methods and allows to model the three different media without prescribing any boundary condition. In this paper, we propose an application of this immersed boundary method to passive flow control around a semi-circular cylinder, realized adding a porous sheath on the obstacle surface in order to smooth the flow dynamics.


2018 ◽  
Vol 841 ◽  
pp. 552-580 ◽  
Author(s):  
Wen Wu ◽  
Ugo Piomelli

Separating turbulent boundary layers over smooth and rough flat plates are studied by large-eddy simulations. A suction–blowing velocity distribution imposed at the top boundary of the computation domain produces an adverse-to-favourable pressure gradient and creates a closed separation bubble. The Reynolds number based on the momentum thickness and the free-stream velocity before the pressure gradient begins is 2500. Virtual sand grain roughness in the fully rough regime is modelled by an immersed boundary method. Compared with a smooth-wall case, streamline detachment occurs earlier and the separation region is substantially larger for the rough-wall case, due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag, so that the point where the wall stress vanishes does not coincide with the detachment of the flow from the surface. A thin reversed-flow region is formed below the roughness crest; the presence of recirculation regions behind each roughness element also affects the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average velocity can still be positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE) in the rough-wall case, the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes.


AIAA Journal ◽  
2019 ◽  
Vol 57 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Istvan Bolgar ◽  
Sven Scharnowski ◽  
Christian J. Kähler

1999 ◽  
Vol 121 (2) ◽  
pp. 441-445 ◽  
Author(s):  
O. O. Badran ◽  
H. H. Bruun

This paper is concerned with measurements of the flow field in the separated flow region behind a backward-facing step. The main instrument used in this research was Flying X Hot-Wire Anemometry (FHWA). Stationary (single normal) Hot-Wire Anemometry (SHWA) was also used. Comparative measurements between the SHW probe and the FHW system were conducted downstream of the step (step height H = 120 mm) and results are presented for axial locations of 1H and 2H. Two step configurations were considered; (i) a blunt leading edge with flow underneath (Case I) and (ii) a blunt leading edge with no flow underneath (Case II). It is observed from the results presented that the two Hot-Wire methods produce significantly different mean velocity and turbulence results inside the separation bubble. In particular, the SHWA method cannot detect the reverse flow velocity direction, while the Flying Hot-Wire clearly identifies the existing reverse flow. Also, in the shear flow region, the results presented indicate that measurements with a SHW probe must be treated with great caution.


2002 ◽  
Vol 473 ◽  
pp. 167-190 ◽  
Author(s):  
DWIGHT BARKLEY ◽  
M. GABRIELA M. GOMES ◽  
RONALD D. HENDERSON

Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized to the primary separation bubble and has a flat roll structure with a spanwise wavelength of 6.9 step heights. The system is further shown to be absolutely stable to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra and visualizations of the global modes of the system are presented for representative Reynolds numbers.


Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Hua-Ling Luo

Numerical simulations were performed to investigate the effects of a passive flow control device named Gurney-flap on the laminar separation bubble and associated losses, aiming at assessing the feasibility of designing low solidity and highly-loaded LP turbine cascade with Gurney-flap. It was shown that with appropriate Gurney-flap the turbine cascade solidity could be decreased by 12.5% without loss increase. The deflection of the cascade mainstream due to Gurney flap can accelerate the flow at suction side of the adjacent blade, and decrease the adverse pressure gradient within the diffusion zone, which delay the boundary layer separation, thin the separation bubble and delay transition onset, contributing to reductions of both the separation-bubble-generated loss and the turbulent boundary-layer-generated loss. The numerical results indicate that the Gurney-flap height and type have significant impacts on the cascade performance, and the round Gurney-flap is the optimal flap type being the most effective for the reduction of flow losses.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Stefan Hoerner ◽  
Shokoofeh Abbaszadeh ◽  
Olivier Cleynen ◽  
Cyrille Bonamy ◽  
Thierry Maître ◽  
...  

Abstract State-of-the-art technologies for wind and tidal energy exploitation focus mostly on axial turbines. However, cross-flow hydrokinetic tidal turbines possess interesting features, such as higher area-based power density in array installations and shallow water, as well as a generally simpler design. Up to now, the highly unsteady flow conditions and cyclic blade stall have hindered deployment at large scales because of the resulting low single-turbine efficiency and fatigue failure challenges. Concepts exist which overcome these drawbacks by actively controlling the flow, at the cost of increased mechatronical complexity. Here, we propose a bioinspired approach with hyperflexible turbine blades. The rotor naturally adapts to the flow through deformation, reducing flow separation and stall in a passive manner. This results in higher efficiency and increased turbine lifetime through decreased structural loads, without compromising on the simplicity of the design. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document