Initiation of diffusive layering by time-dependent shear

2018 ◽  
Vol 858 ◽  
pp. 588-608 ◽  
Author(s):  
Justin M. Brown ◽  
Timour Radko

The Arctic halocline is generally stable to the development of double-diffusive and dynamic instabilities – the two major sources of small-scale mixing in the mid-latitude oceans. Despite this, observations show the abundance of double-diffusive staircases in the Arctic Ocean, which suggests the presence of some destabilizing process facilitating the transition from smooth-gradient to layered stratification. Recent studies have shown that an instability can develop in such circumstances if weak static shear is present even when the flow is dynamically and diffusively stable. However, the impact of oscillating shear, associated with the presence of internal gravity waves, has not yet been addressed for the diffusive case. Through two-dimensional simulations of diffusive convection, we have investigated the impact of the magnitude and frequency of externally forced oscillatory shear on the thermohaline-shear instability. Simulations with stochastic shear – characterized by a continuous spectrum of frequencies from inertial to buoyancy – indicate that thermohaline layering does occur due to the presence of destabilizing modes (oscillations of near the buoyancy frequency). These simulations show that such layers appear as well-defined steps in the temperature and salinity profiles. Thus, the thermohaline-shear instability is a plausible mechanism for staircase formation in the Arctic and merits substantial future study.

2021 ◽  
Author(s):  
Leo Middleton ◽  
Elizabeth Fine ◽  
Jennifer MacKinnon ◽  
Matthew Alford ◽  
John Taylor

<p>Understanding the transport of heat in the Arctic ocean will be vital for predicting the fate of sea-ice in the decades to come. Small-scale turbulence is an important driver of heat transport and one of the major forms of this turbulence is known as `double-diffusive convection'. Double diffusion refers to a variety of turbulent processes in which potential energy is released into kinetic energy, made possible in the ocean by the difference in molecular diffusivities between salinity and temperature.  The most direct measurements of ocean mixing require sampling velocity or temperature gradients on scales <1mm, so-called microstructure measurements. Here we present a new method for estimating the energy dissipated by double-diffusive convection using temperature and salinity measurements on larger scales (100s to 1000s of metres). The method estimates the up-gradient diapycnal buoyancy flux, which is hypothesised to balance the dissipation rate. To calculate the temperature and salinity gradients on small scales we apply a canonical scaling for compensated thermohaline variance (or `spice') and project the gradients down to small scales. We apply the method to a high-resolution survey of temperature and salinity through a subsurface Arctic eddy (Fine et al. 2018) and compare the results with simultaneous microstructure measurements. The new technique can reproduce up to 70% of the observed dissipation rates to within a factor of 3. This suggests the method could be used to estimate the dissipation and heat fluxes associated with double-diffusive convection in regions without microstructure measurements. Finally, we show the method maintains predictive skill when applied to a sub-sampling of the CTD data at lower resolutions.</p>


2019 ◽  
Vol 19 (21) ◽  
pp. 13681-13699 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015–2016 was characterized by exceptionally low stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC–GW-LCYCLE II–SALSA) campaign from December 2015 to March 2016 allow the investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. Two-dimensional vertical cross sections of nitric acid (HNO3) along the flight track and tracer–tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 13 km in January and nitrified filaments persisting until the middle of March. Narrow coherent structures tilted with altitude of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, extensive nitrification of the LMS between 5.0 and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of HNO3 maxima derived from the GLORIA observations as well as the overall nitrification of the LMS. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on nitric acid trihydrate (NAT)), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) slightly improved the agreement with the GLORIA observations of individual flights. However, no parameter could be isolated which resulted in a general improvement for all flights. Still, the sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important for the simulated HNO3 distributions towards the end of the winter.


2019 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC/GW-LCYLCE II/SALSA) campaign from December 2015 to March 2016 allow an investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. For the first time vertical cross-sections of nitric acid (HNO3) along the flight track and tracer-tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with strongly enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 11 km in January and nitrified filaments persisting until the middle of March. Narrow streaks of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, a nitrification of the LMS between 5.0 ppbv and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. This extent of nitrification has never been observed before in the Arctic lowermost stratosphere. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of maximum HNO3 mixing ratios derived from the GLORIA observations as well as the enhancement at lower altitudes. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on NAT), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) mostly improve the agreement with the GLORIA observations. The sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important towards the end of the winter.


2008 ◽  
Vol 38 (10) ◽  
pp. 2271-2282 ◽  
Author(s):  
Julian Simeonov ◽  
Melvin E. Stern

Abstract Two-dimensional direct numerical simulations (DNS) are used to investigate the growth and nonlinear equilibration of spatially periodic double-diffusive intrusion for negative vertical temperature Tz < 0 and salinity Sz < 0 gradients, which are initially stable to small-scale double diffusion. The horizontal temperature Tx and salinity Sx gradients are assumed to be uniform, density compensated, and unbounded. The weakly sloping intrusion is represented as a mean lateral flow in a square computational box tilted with a slope equal to that of the fastest-growing linear theory mode; the vertical (η) domain size of the box L*η is a multiple of the fastest-growing wavelength. Solutions for the fastest-growing wavelength show that the intrusion growth is disrupted by salt fingers that develop when the rotation of the isotherms and isohalines by the intrusion shear results in temperature and salinity inversions; the thick inversion regions are separated by a thin interface supporting diffusive convection. These equilibrium solutions were always unstable to longer vertical wavelengths arising because of the merging of the inversion layers. The DNS predicts the following testable results for the maximum lateral velocity U* max = 0.13NSL*η, the lateral heat flux F* = 0.008ρCP(Sx/Sz)1/2(NS/KT)1/4NSL*η2.5(βSz/α), and the interface thickness hρ = 0.12L*η, where NS = , g is the gravity acceleration, ρ is the density, β/α is the haline contraction/heat expansion coefficient, and CP is the specific heat capacity. The results are compared with observations in the Arctic Ocean.


2014 ◽  
Vol 44 (1) ◽  
pp. 289-296 ◽  
Author(s):  
J. R. Carpenter ◽  
M.-L. Timmermans

Abstract The diffusive (or semiconvection) regime of double-diffusive convection (DDC) is widespread in the polar oceans, generating “staircases” consisting of high-gradient interfaces of temperature and salinity separated by convectively mixed layers. Using two-dimensional direct numerical simulations, support is provided for a previous theory that rotation can influence DDC heat fluxes when the thickness of the thermal interface sufficiently exceeds that of the Ekman layer. This study finds, therefore, that the earth’s rotation places constraints on small-scale vertical heat fluxes through double-diffusive layers. This leads to departures from laboratory-based parameterizations that can significantly change estimates of Arctic Ocean heat fluxes in certain regions, although most of the upper Arctic Ocean thermocline is not expected to be dominated by rotation.


Author(s):  
Théo Tassin ◽  
Thomas Gastine ◽  
Alexandre Fournier

Summary Convection in the liquid outer core of the Earth is driven by thermal and chemical perturbations. The main purpose of this study is to examine the impact of double-diffusive convection on magnetic field generation by means of three-dimensional global geodynamo models, in the so-called “top-heavy” regime of double-diffusive convection, when both thermal and compositional background gradients are destabilizing. Using a linear eigensolver, we begin by confirming that, compared to the standard single-diffusive configuration, the onset of convection is facilitated by the addition of a second buoyancy source. We next carry out a systematic parameter survey by performing 79 numerical dynamo simulations. We show that a good agreement between simulated magnetic fields and the geomagnetic field can be attained for any partitioning of the convective input power between its thermal and chemical components. On the contrary, the transition between dipole-dominated and multipolar dynamos is found to strongly depend on the nature of the buoyancy forcing. Classical parameters expected to govern this transition, such as the local Rossby number -a proxy of the ratio of inertial to Coriolis forces- or the degree of equatorial symmetry of the flow, fail to capture the dipole breakdown. A scale-dependent analysis of the force balance instead reveals that the transition occurs when the ratio of inertial to Lorentz forces at the dominant length scale reaches 0.5, regardless of the partitioning of the buoyancy power. The ratio of integrated kinetic to magnetic energy Ek/Em provides a reasonable proxy of this force ratio. Given that Ek/Em ≈ 10−4 − 10−3 in the Earth’s core, the geodynamo is expected to operate far from the dipole-multipole transition. It hence appears that the occurrence of geomagnetic reversals is unlikely related to dramatic and punctual changes of the amplitude of inertial forces in the Earth’s core, and that another mechanism must be sought.


Author(s):  
Leo Middleton ◽  
Catherine A. Vreugdenhil ◽  
Paul R. Holland ◽  
John R. Taylor

AbstractThe transport of heat and salt through turbulent ice shelf-ocean boundary layers is a large source of uncertainty within ocean models of ice shelf cavities. This study uses small-scale, high resolution, 3D numerical simulations to model an idealised boundary layer beneath a melting ice shelf to investigate the influence of ambient turbulence on double-diffusive convection (i.e. convection driven by the difference in diffusivities between salinity and temperature). Isotropic turbulence is forced throughout the simulations and the temperature and salinity are initialised with homogeneous values similar to observations. The initial temperature and the strength of forced turbulence are varied as controlling parameters within an oceanographically relevant parameter space. Two contrasting regimes are identified. In one regime double-diffusive convection dominates, and in the other convection is inhibited by the forced turbulence. The convective regime occurs for high temperatures and low turbulence levels, where it is long-lived and affects the flow, melt rate and melt pattern. A criterion for identifying convection in terms of the temperature and salinity profiles, and the turbulent dissipation rate, is proposed. This criterion may be applied to observations and theoretical models to quantify the effect of double-diffusive convection on ice shelf melt rates.


2019 ◽  
Vol 15 ◽  
pp. 6121-6137
Author(s):  
Gangamani Hv

This paper focuses on the study of acoustic propagation of internal gravity waves which generates small scale variations through propagation and hence can obtain transmission co-efficients using N2 buoyancy frequency variation of a compressible stratified fluid for a small regions. We have also analysed the results using the asymptotic expansions for large compressible limits. The reduction of the transmission in the N2-barrier region for the density layers sandwiched along with acoustic waves is obtained through graphs for different density barrier regions. The dispersion characteristics shows the contours of the transmission in the wave number plane. The curves for ! < N0 are hyperbolic, representing internal gravity waves as these become the dispersionwaves for an incompressible fluid and the curve with ! > N0 are ellipsoids which represent the acoustic gravity or infrasonic waves for the cut off frequency


2019 ◽  
Vol 34 (4) ◽  
pp. 959-983 ◽  
Author(s):  
Morten Køltzow ◽  
Barbara Casati ◽  
Eric Bazile ◽  
Thomas Haiden ◽  
Teresa Valkonen

AbstractIncreased human activity in the Arctic calls for accurate and reliable weather predictions. This study presents an intercomparison of operational and/or high-resolution models in an attempt to establish a baseline for present-day Arctic short-range forecast capabilities for near-surface weather (pressure, wind speed, temperature, precipitation, and total cloud cover) during winter. One global model [the high-resolution version of the ECMWF Integrated Forecasting System (IFS-HRES)], and three high-resolution, limited-area models [Applications of Research to Operations at Mesoscale (AROME)-Arctic, Canadian Arctic Prediction System (CAPS), and AROME with Météo-France setup (MF-AROME)] are evaluated. As part of the model intercomparison, several aspects of the impact of observation errors and representativeness on the verification are discussed. The results show how the forecasts differ in their spatial details and how forecast accuracy varies with region, parameter, lead time, weather, and forecast system, and they confirm many findings from mid- or lower latitudes. While some weaknesses are unique or more pronounced in some of the systems, several common model deficiencies are found, such as forecasting temperature during cloud-free, calm weather; a cold bias in windy conditions; the distinction between freezing and melting conditions; underestimation of solid precipitation; less skillful wind speed forecasts over land than over ocean; and difficulties with small-scale spatial variability. The added value of high-resolution limited area models is most pronounced for wind speed and temperature in regions with complex terrain and coastlines. However, forecast errors grow faster in the high-resolution models. This study also shows that observation errors and representativeness can account for a substantial part of the difference between forecast and observations in standard verification.


2017 ◽  
Vol 598 ◽  
pp. A98 ◽  
Author(s):  
Jérémy Leconte ◽  
Franck Selsis ◽  
Franck Hersant ◽  
Tristan Guillot

In an atmosphere, a cloud condensation region is characterized by a strong vertical gradient in the abundance of the related condensing species. On Earth, the ensuing gradient of mean molecular weight has relatively few dynamical consequences because N2 is heavier than water vapor, so that only the release of latent heat significantly impacts convection. On the contrary, in a hydrogen dominated atmosphere (e.g., giant planets), all condensing species are significantly heavier than the background gas. This can stabilize the atmosphere against convection near a cloud deck if the enrichment in the given species exceeds a critical threshold. This raises two questions. What is transporting energy in such a stabilized layer, and how affected can the thermal profile of giant planets be? To answer these questions, we first carry out a linear analysis of the convective and double-diffusive instabilities in a condensable medium showing that an efficient condensation can suppress double-diffusive convection. This suggests that a stable radiative layer can form near a cloud condensation level, leading to an increase in the temperature of the deep adiabat. Then, we investigate the impact of the condensation of the most abundant species (water) with a steady-state atmosphere model. Compared to standard models, the temperature increase can reach several hundred degrees at the quenching depth of key chemical tracers. Overall, this effect could have many implications for our understanding of the dynamical and chemical state of the atmosphere of giant planets, for their future observations (with Juno for example), and for their internal evolution.


Sign in / Sign up

Export Citation Format

Share Document