scholarly journals Closure model for homogeneous isotropic turbulence in the Lagrangian specification of the flow field

2018 ◽  
Vol 841 ◽  
pp. 521-551
Author(s):  
Makoto Okamura

This paper proposes a new two-point closure model that is compatible with the Kolmogorov$-5/3$power law for homogeneous isotropic turbulence in an incompressible fluid using the Lagrangian specification of the flow field. A closed set of three equations was derived from the Navier–Stokes equation with no adjustable free parameters. The Kolmogorov constant and the skewness of the longitudinal velocity derivative were evaluated to be 1.779 and$-0.49$, respectively, using the proposed model. The bottleneck effect was also reproduced in the near-dissipation range.

1997 ◽  
Vol 345 ◽  
pp. 307-345 ◽  
Author(s):  
SHIGEO KIDA ◽  
SUSUMU GOTO

A set of integro-differential equations in the Lagrangian renormalized approximation (Kaneda 1981) is rederived by applying a perturbation method developed by Kraichnan (1959), which is based upon an extraction of direct interactions among Fourier modes of a velocity field and was applied to the Eulerian velocity correlation and response functions, to the Lagrangian ones for homogeneous isotropic turbulence. The resultant set of integro-differential equations for these functions has no adjustable free parameters. The shape of the energy spectrum function is determined numerically in the universal range for stationary turbulence, and in the whole wavenumber range in a similarly evolving form for the freely decaying case. The energy spectrum in the universal range takes the same shape in both cases, which also agrees excellently with many measurements of various kinds of real turbulence as well as numerical results obtained by Gotoh et al. (1988) for a decaying case as an initial value problem. The skewness factor of the longitudinal velocity derivative is calculated to be −0.66 for stationary turbulence. The wavenumber dependence of the eddy viscosity is also determined.


2019 ◽  
Vol 864 ◽  
pp. 244-272 ◽  
Author(s):  
L. Djenidi ◽  
R. A. Antonia ◽  
S. L. Tang

The problem of homogeneous isotropic turbulence (HIT) is revisited within the analytical framework of the Navier–Stokes equations, with a view to assessing rigorously the consequences of the scale invariance (an exact property of the Navier–Stokes equations) for any Reynolds number. The analytical development, which is independent of the 1941 (K41) and 1962 (K62) theories of Kolmogorov for HIT for infinitely large Reynolds number, is applied to the transport equations for the second- and third-order moments of the longitudinal velocity increment, $(\unicode[STIX]{x1D6FF}u)$. Once the normalised equations and the constraints required for complying with the scale-invariance property of the equations are presented, results derived from these equations and constraints are discussed and compared with measurements. It is found that the fluid viscosity, $\unicode[STIX]{x1D708}$, and the mean kinetic energy dissipation rate, $\overline{\unicode[STIX]{x1D716}}$ (the overbar denotes spatial and/or temporal averaging), are the only scaling parameters that make the equations scale-invariant. The analysis further leads to expressions for the distributions of the skewness and the flatness factor of $(\unicode[STIX]{x1D6FF}u)$ and shows that these distributions must exhibit plateaus (of different magnitudes) in the dissipative and inertial ranges, as the Taylor microscale Reynolds number $Re_{\unicode[STIX]{x1D706}}$ increases indefinitely. Also, the skewness and flatness factor of the longitudinal velocity derivative become constant as $Re_{\unicode[STIX]{x1D706}}$ increases; this is supported by experimental data. Further, the analysis, backed up by experimental evidence, shows that, beyond the dissipative range, the behaviour of $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}$ with $n=2$, 3 and 4 cannot be represented by a power law of the form $r^{\unicode[STIX]{x1D701}_{n}}$ when the Reynolds number is finite. It is shown that only when $Re_{\unicode[STIX]{x1D706}}\rightarrow \infty$ can an $n$-thirds law (i.e. $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}\sim r^{\unicode[STIX]{x1D701}_{n}}$, with $\unicode[STIX]{x1D701}_{n}=n/3$) emerge, which is consistent with the onset of a scaling range.


2011 ◽  
Vol 676 ◽  
pp. 191-217 ◽  
Author(s):  
MICHAEL WILCZEK ◽  
ANTON DAITCHE ◽  
RUDOLF FRIEDRICH

We investigate the single-point probability density function of the velocity in three-dimensional stationary and decaying homogeneous isotropic turbulence. To this end, we apply the statistical framework of the Lundgren–Monin–Novikov hierarchy combined with conditional averaging, identifying the quantities that determine the shape of the probability density function. In this framework, the conditional averages of the rate of energy dissipation, the velocity diffusion and the pressure gradient with respect to velocity play a key role. Direct numerical simulations of the Navier–Stokes equation are used to complement the theoretical results and assess deviations from Gaussianity.


1996 ◽  
Vol 10 (18n19) ◽  
pp. 2325-2392 ◽  
Author(s):  
E. LEVICH

In this paper we review certain classical and modern concepts pertinent for the theory of developed turbulent flows. We begin by introducing basic facts concerning the properties of the Navier-Stokes equation with the emphasis on invariant properties of the vorticity field. Then we discuss classical semiempirical approaches to developed turbulence which for a long time have constituted a basis for engineering solutions of turbulent flows problems. We do it for two examples, homogeneous isotropic turbulence and flat channel turbulent flow. Next we discuss the insufficiency of classical semi-empirical approaches. We show that intermittency is an intrinsic feature of all turbulent flows and hence it should be accounted for in any reasonable theoretical approach to turbulence. We argue that intermittency in physical space is in one to one correspondence with certain phase coherence of turbulence in an appropriate dual space, e.g. Fourier space for the case of homogeneous isotropic turbulence. In the same time the phase coherence has its origin in invariant topological properties of vortex lines in inviscid flows, modified by the presence of small molecular viscosity. This viewpoint is expounded again using the examples of homogeneous isotropic turbulence and channel flow turbulence. Finally we briefly discuss the significance of phase coherence and intermittency in turbulence for the fundamental engineering challenge of turbulence control.


2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Nicola de Divitiis

The purpose of this paper is to improve a hypothesis of the previous work of N. de Divitiis (2011) dealing with the finite-scale Lyapunov analysis of isotropic turbulence. There, the analytical expression of the structure function of the longitudinal velocity differenceΔuris derived through a statistical analysis of the Fourier transformed Navier-Stokes equations and by means of considerations regarding the scales of the velocity fluctuations, which arise from the Kolmogorov theory. Due to these latter considerations, this Lyapunov analysis seems to need some of the results of the Kolmogorov theory. This work proposes a more rigorous demonstration which leads to the same structure function, without using the Kolmogorov scale. This proof assumes that pair and triple longitudinal correlations are sufficient to determine the statistics ofΔurand adopts a reasonable canonical decomposition of the velocity difference in terms of proper stochastic variables which are adequate to describe the mechanism of kinetic energy cascade.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shuili Ren ◽  
Peiqing Liu

For turboprop engine, the S-shaped intake affects the engine performance and the propeller is not far in front of the inlet of the S-shaped intake, so the slipstream inevitably affects the flow field in the S-shaped intake and the engine performance. Here, an S-shaped intake with/without propeller is studied by solving Reynolds-averaged Navier-Stokes equation employed SST k-ω turbulence model. The results are presented as time-averaged results and transient results. By comparing the flow field in S-shaped intake with/without propeller, the transient results show that total pressure recovery coefficient and distortion coefficient on the AIP section vary periodically with time. The time-averaged results show that the influence of propeller slipstream on the performance of S-shaped intake is mainly circumferential interference and streamwise interference. Circumferential interference mainly affects the secondary flow in the S-shaped intake and then affects the airflow uniformity; the streamwise interference mainly affects the streamwise flow separation in the S-shaped intake and then affects the total pressure recovery. The total pressure recovery coefficient on the AIP section for the S-shaped intake with propeller is 1%-2.5% higher than that for S-shaped intake without propeller, and the total pressure distortion coefficient on the AIP section for the S-shaped intake with propeller is 1%-12% higher than that for the S-shaped intake without propeller. However, compared with the free stream flow velocity ( Ma = 0.527 ), the influence of the propeller slipstream belongs to the category of small disturbance, which is acceptable for engineering applications.


Author(s):  
Way Lee Cheng ◽  
Reza Sadr

There have been several reports that suspending nano-particles in a fluid, or nanofluids, can enhance heat transfer properties such as conductivity. However, the extend of the reported enhancement is inconsistent in the literature and the exact mechanisms that govern these observations (or phenomena) are not fully understood. Although the interaction between the fluid and suspended particles is suspected to be the main contributor to this phenomenon, literature shows contradicting conclusions in the underlying mechanism responsible for these effects. This highlights the need for development of computational tools in this area. In this study, a computational approach is developed for simulating the induced flow field by randomly moving particles suspended in a quiescent fluid. Brownian displacement is used to describe the random walk of the particles in the fluid. The steady state movement is described with simplified Navier-Stokes equation to solve for the induced fluid flow around the moving particles with constant velocity at small time steps. The unsteady behavior of the induced flow field is approximated using the velocity profiles obtained from FLUENT. Initial results show that random movements of Brownian particles suspended in the fluid induce a random flow disturbance in the flow field. It is observed that the flow statistics converge asymptotically as time-step reduces. Moreover, inclusion of the transitional movement of the particles significantly affects the results.


2016 ◽  
Vol 821 ◽  
pp. 113-119 ◽  
Author(s):  
Eduard Stach ◽  
Jiří Falta ◽  
Matěj Sulitka

Tilting (parallelism error) of guiding surfaces may cause reduction of load capacity of hydrostatic (HS) guideways and bearings in machine tools (MT). Using coupled finite element (FE) computational models of MT structures, it is nowadays possible to determine the extent of guiding surfaces deformation caused by thermal effects, gravitational force, cutting forces and inertia effects. Assessment of maximum allowable tilt has so far been based merely on experience. The paper presents a detailed model developed for description of the effect of HS bearing tilt on the load capacity characteristics of HS guideways. The model allows an evaluation of the tilt influence on the change of the characteristics as well as determination of the limit values of allowable tilt in interaction with compliant machine tool structure. The proposed model is based on the model of flow over the land of the HS pocket under extended Navier-Stokes equation. The model is verified using an experimental test rig.


2013 ◽  
Vol 5 (3) ◽  
pp. 435-445
Author(s):  
M. S. I. Mallik ◽  
M. A. Uddin ◽  
M. A. Rahman

Direct numerical simulation (DNS) in two-dimensional homogeneous isotropic turbulence is performed by using the Spectral method at a Reynolds number Re = 1000 on a uniformly distributed grid points. The Reynolds number is low enough that the computational grid is capable of resolving all the possible turbulent scales. The statistical properties in the computed flow field show a good agreement with the qualitative behavior of decaying turbulence. The behavior of the flow structures in the computed flow field also follow the classical idea of the fluid flow in turbulence. Keywords: Direct numerical simulation, Isotropic turbulence, Spectral method. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:http://dx.doi.org/10.3329/jsr.v5i3.12665 J. Sci. Res. 5 (3), 435-445 (2013)  


Sign in / Sign up

Export Citation Format

Share Document