Serum lipid peroxidation markers are correlated with those in brain samples in different stress models

2013 ◽  
Vol 26 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Asuman Celikbilek ◽  
Ayse Yesim Gocmen ◽  
Nermin Tanik ◽  
Nazmi Yaras ◽  
Piraye Yargicoglu ◽  
...  

ObjectiveStress can stimulate increased production of oxygen radicals. We investigated the correlations between serum levels of lipid peroxidation markers and those in brain samples in different stress models.MethodsAnimals (n= 96) were divided equally into eight groups: a control group and groups treated with vitamin E (Vit E); exposed to immobilisation stress; exposed to immobilisation stress and treated with Vit E; exposed to cold stress; exposed to cold stress and treated with Vit E; exposed to both immobilisation and cold stress; and a final group exposed to both immobilisation and cold stress and treated with Vit E. Thiobarbituric acid-reactive substance (TBARS) in brain samples and levels of TBARS, corticosterone, conjugated dienes (CD), lipids, and paraoxonase-1 (PON1) activity in serum were analysed.ResultsSerum corticosterone (p< 0.001), CD (p< 0.05), lipid (p< 0.05) levels, and brain TBARS (p< 0.05) levels were significantly higher in all stress groups than in controls, and the elevated levels were reversed in the Vit E-treated stress groups (p< 0.05). Serum PON1 activity was not different among the groups (p> 0.05). Serum TBARS levels increased significantly in all stress groups (p< 0.05), but this elevation was only reversed in the group exposed to both immobilisation and cold stress and treated with Vit E (p< 0.001).ConclusionThese results suggest that serum levels of lipid peroxidation markers can be determined readily and may be useful as indicators to evaluate the effects of oxidative stress in the brain.

2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2000 ◽  
Vol 98 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Bharti MACKNESS ◽  
Paul N. DURRINGTON ◽  
Bashir ABUASHIA ◽  
Andrew J. M. BOULTON ◽  
Michael I. MACKNESS

Human serum paraoxonase 1 (PON1) is located on high-density lipoprotein and has been implicated in the detoxification of organophosphates, and possibly in the prevention of lipid peroxidation of low-density lipoprotein. PON1 has two genetic polymorphisms, both due to amino acid substitutions: one involving glutamine (Q genotype) and arginine (R genotype) at position 192, and the other involving leucine (L genotype) and methionine (M genotype) at position 55. We investigated the effects of these polymorphisms, and of a polymorphism of the PON2 gene at position 310 (Cys/Ser; C and S genotypes respectively), on serum PON1 activity and concentration, plasma lipids and lipoproteins and glycaemic control in 93 individuals with type II diabetes with no complications and in 101 individuals with type II diabetes with retinopathy. Serum PON1 activity in the group with no complications [median 164.1 nmol·min-1·ml-1 (range 8.0–467.8)] was significantly higher than in the group with retinopathy [113.4 nmol·min-1·ml-1 (3.0–414.6)] (P< 0.001), but the serum PON1 concentration was not different between the groups. The gene frequencies of the PON1-55 and PON1-192 polymorphisms and of the PON2-310 polymorphism were not different between the study populations. The PON1-55 and PON1-192 polymorphisms affected PON1 activity in the way described in a previous study of a control group and subjects with type II diabetes. The PON2-310 polymorphism also significantly affected serum PON1. PON1 activity was significantly higher in individuals with the PON2-310 CC genotype in both groups with type II diabetes, and the PON1 concentration was significantly higher in PON2-310 CC homozygotes with no complications than in the group with retinopathy. Neither the PON1-55 nor the PON1-192 polymorphism was correlated with the serum lipid or lipoprotein concentration in either group. In the group with retinopathy (but not the group with no complications), all three PON polymorphisms were correlated with glycaemic control, which was worse for the PON1-55 genotypes in the order MM > LM > LL (P = 0.0032), for the PON1-192 genotypes in the order RR > QR > QQ (P = 0.011) and for the PON2-310 genotypes in the order CC > CS > SS (P = 0.010). Low serum PON1 activity in retinopathy may be related to an increased tendency for lipid peroxidation. Our findings thus raise the possibility that, in retinopathy, the PON2 gene may influence PON1, and that an inter-relationship between the PON1 and PON2 genes may influence glycaemic control in subjects with type II diabetes complicated by retinopathy.


2018 ◽  
Vol 8 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Hassan Ahmadvand ◽  
Esmaeel Babaeenezhad ◽  
Maryam Nasri ◽  
Leila Jafaripour ◽  
Reza Mohammadrezaei Khorramabadi

Introduction: Glutathione (GSH) protects the tissue and cell from oxidative injury. Objectives: In the current study, we investigated the possible effects of GSH on liver markers, oxidative stress and inflammatory indices in rat with renal ischemia reperfusion (RIR) injury. Materials and Methods: Twenty-four adult male Wistar rats were divided into 3 groups (n=8). Group I (the control group), group II (the RIR group) received saline (0.25 mL/d, intraperitoneally; i.p.), group III as the RIR group that received GSH (100 mg/kg/d, i.p.). The treatment with saline or GSH began daily 14 days before RIR induction. RIR was induced by clamping renal pedicles for 45 minutes and 24 hours of reperfusion. Results: RIR significantly increased the serum level of nitric oxide (NO), the serum activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), the serum and renal levels of malondialdehyde (MDA), and the serum activity of myeloperoxidase (MPO). However, RIR significantly decreased the serum and renal levels of GSH, serum paraoxonase 1 (PON1) activity, and the serum and renal activities of catalase (CAT) and glutathione peroxidase (GPX). GSH administration could significantly improve the serum activities of AST, GGT, MPO, GPX and PON1 and serum levels of NO, renal MDA, GSH levels, and serum and also renal CAT activities. Conclusion: Our study indicated that GSH administration ameliorated RIR injury in rats by improving the activities of liver markers and antioxidant enzymes, the levels of MDA, NO, GSH and MPO activity.


2019 ◽  
Vol 12 (1) ◽  
pp. 245-250
Author(s):  
Kunjumon Dayana ◽  
Megaravalli R. Manasa

Lipid peroxidation generates free radicals. These free radicals are scavenged by antioxidant defense mechanisms. An imbalance between the free radicals generation and antioxidant mechanisms can result in tissue damage. Several drugs are known to induce lipid peroxidation which can be responsible for their toxic potential. Hence the current study was planned to assess the effect of ceftriaxone, a third generation cephalosporin, on lipid peroxidation and levels of antioxidants in albino mice. Ceftriaxone was injected intraperitoneally at two doses - 100 mg/kg body weight; 200 mg/kg body weight – to albino mice. TBARS (Thiobarbituric acid reactive substance) levels in plasma, erythrocytes as well as tissue and the antioxidant enzymes activities were estimated. The data from ceftriaxone groups was analyzed with control group using ANOVA and Dunnett’s test as post hoc. Ceftriaxone (100 mg/kg body weight) did not alter TBARS levels compared to control. Ceftriaxone - 200 mg/kg body weight, has significantly increased TBARS levels. The activities of antioxidant enzymes were significantly decreased by ceftriaxone at these doses. The present study demonstrates that ceftriaxone has the potential for lipid peroxidation induction and reduction in the antioxidant enzymes acitivities in albino mice.


2008 ◽  
Vol 5 (1) ◽  
pp. 55-59 ◽  
Author(s):  
P. Chaturvedi

In the present study, inhibitory effect of the methanol extract ofRaphanus sativusroot on lipid peroxidation has been carried out in normal rats. Graded doses of methanol extract of root of the plant (40, 80 and 120 mg kg−1body weight) were administered orally for 15 days to experimental treated rats. Distilled water was administered to experimental control rats. At the end of experiment, rats were killed by decapitation after ether anesthesia. Blood and liver were collected to measure thiobarbituric acid reactive substance, reduced glutathione and activity of catalase. Results indicated that the extract ofR. sativusroot reduced the levels of thiobarbituric acid reactive substance significantly in all experimental treated groups (P < 0.05) as compared to the experimental control group. It also increased the levels of reduced glutathione and increased the activity of catalase.In vitroexperiments with the liver of experimental control and experimental treated rats were also carried out against cumene hydroperoxide induced lipid peroxidation. The extract inhibitedin vitrocumene hydroperoxide induced lipid peroxidation.R. sativusinhibits lipid peroxidationin vivoandin vitro. It provides protection by strengthening the antioxidants like glutathione and catalase. Inclusion of this plant in every day diet would be beneficial.


2008 ◽  
Vol 78 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Suano de Souza ◽  
Silverio Amancio ◽  
Saccardo Sarni ◽  
Sacchi Pitta ◽  
Fernandes ◽  
...  

Objectives: To evaluate the frequency of non-alcoholic fatty liver disease, the retinol serum levels, lipid profile, and insulin resistance in overweight/obese children. To relate these biochemical variables with the risk of this disease in the population studied. Methods: The study was cross-sectional and prospective, with 46 overweight/obese school children (28 female, 18 male; mean age 8.6 years). The control group consisted of 45 children, paired by age and gender. Hepatic steatosis, evaluated by ultrasound, was classified as normal, mild, moderate, or severe. Also evaluated were serum retinol levels; thiobarbituric acid reactive substances; lipid profile; and fasting glucose and serum insulin levels, used for the calculation of the Homeostasis Model Assessment. Results: Hepatic ultrasound alterations were found in 56.5% and 48,9% of the overweight/obese and control group children, respectively. Presence of obesity was associated with high levels of triglycerides (OR = 4.6; P = 0.002). In the studied children, the risk of steatosis was related to a trend to a higher percentage of retinol inadequacy (OR = 2.8; p = 0.051); there was no association with thiobarbituric acid reactive substances, lipid profile, or insulin resistance. Conclusions: The high frequency of non-alcoholic fatty liver disease in both groups, evaluated by hepatic ultrasound, in low-socioeconomic level children, independent of nutritional condition and without significant association with insulin resistance, emphasizes that especially in developing countries, other risk factors such as micronutrient deficiencies (e.g. vitamin A) are involved.


Author(s):  
Magdalena Londzin-Olesik ◽  
Beata Kos-Kudla ◽  
Jacek Karpe ◽  
Aleksandra Nowak ◽  
Mariusz Nowak

Abstract Background and Study Aims Thyroid-associated orbitopathy, the most common extrathyroidal manifestation of Graves’ disease, is an autoimmune inflammation of orbital soft tissue. We report the study assessing the effect of immunosuppressive treatment with methylprednisolone on selected antioxidant parameters in patients with Graves’ disease with active thyroid-associated orbitopathy. Patients and Methods Activity and serum levels of selected antioxidant parameters as well as lipid peroxidation products were determined in a group of 56 patients with active thyroid-associated orbitopathy at three time-points: at baseline, after the discontinuation of intravenous methylprednisolone treatment and at 3 months after the discontinuation of additional oral methylprednisolone treatment. A control group consisted of 20 healthy age- and sex-matched volunteers. Results We found an increased activity of superoxide dismutase and glutathione peroxidase and increased serum levels of uric acid, malondialdehyde and conjugated dienes, as well as a reduced activity of paraoxonase-1 and reduced serum vitamin C level in the study group at baseline. Systemic intravenous and oral methylprednisolone therapy led to normalization of activity and concentration of the most studied parameters. Conclusion Results of our study confirmed that oxidative stress is one of the factors involved in the pathogenesis of thyroid-associated orbitopathy and the methyloprednisolone treatment is effective in reducing both clinical symptoms and oxidative stress in patients with this disease.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sobia Manzoor ◽  
Ayesha Khan ◽  
Beena Hasan ◽  
Shamim Mushtaq ◽  
Nikhat Ahmed

Background: Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and activities of enzymatic and antioxidant systems in schizophrenia. Objectives: Present study focuses on identification of HNE-protein adducts and its related molecular consequences in schizophrenia pathology due to oxidative stress, particularly lipid peroxidation. Material and Methods: Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances (TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also estimated. Results: Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ± 1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects an increased lipid peroxidation (LPO). Conclusion: Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production. Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative stress in schizophrenia pathology.


1989 ◽  
Vol 67 (1) ◽  
pp. 69-75 ◽  
Author(s):  
J. W. Starnes ◽  
G. Cantu ◽  
R. P. Farrar ◽  
J. P. Kehrer

The effects of chronic endurance exercise and food restriction on nonenzymatic lipid peroxidation (LP) of gastrocnemius muscle during aging were studied in male, Fischer 344 rats. One set of rats aged 6 and 18 mo were assigned to an exercise group (treadmill running) or an age-matched sedentary control group. After 6 mo (at the ages of 12 and 24 mo), LP and levels of alpha-tocopherol and its oxidized form, alpha-tocopheryl quinone, were measured. The extent of LP was determined in homogenates by measuring the content of thiobarbituric acid-reactive substances. After homogenization, the muscles were immediately evaluated for basal LP and also incubated in the presence of oxidant stressors for 2 h to assess antioxidant capacity (AOC) and for 24 h to estimate total peroxidizable lipid (TPL). Basal LP was not affected by age or exercise. AOC was not affected by exercise at either age. However aging significantly decreased AOC and increased alpha-tocopheryl quinone in both sedentary and exercised groups. TPL was not affected by age, but was increased by exercise training (P less than 0.05). Another set of rats was divided into the following three groups at 3 mo of age: sedentary, fed ad libitum (S); sedentary, caloric restricted by alternate day feeding (R); and exercised by forced treadmill running (E). Two years later, when the rats were 27 mo of age, the extent of LP was assessed.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Author(s):  
Ali osali ◽  
Alireza Rostami

Abstract BackgroundThe purpose of this study was to investigate the effect of 12 months of aerobic exercise combining stachys lavandulifolia (S. lavandulifolia) consumption on anxiety, Metabolic Syndrome profiles and antioxidant defense (Glutathione) and lipid peroxidation (Malondialdehyde) in 50-65 years old women with syndrome metabolic.Methods48 women with syndrome Metabolic were randomly divided into four groups: exercise (n=12), exercise+S. lavandulifolia (n=12), S. lavandulifolia (n=12) and control group (n=12). S. lavandulifolia groups consumed 3 g aerial parts of S. lavandulifolia daily. Training groups performed an exercise protocol of aerobic exercise for 12 months (three sessions per week). Blood samples were obtained before and after training period for antioxidant indicators and lipid degradation measurement. Also, Beck anxiety questionnaire used for evaluating levels of anxiety. T-test and one-way analysis of variance were used for the evaluation of within-group and between-group differences, respectively.ResultsA significant increase was observed in serum levels of Malondialdehyde (P =0.004), Catalase indexes (Pvalue= 0.01), and Glutathione (P=0.001) in the training group and S. lavandulifolia groups after 12 months. Body weight, BMI, and SBP and Anexiety was decreased significantly greater in exercise +S. lavandulifolia group compared to control, exercise and S. lavandulifolia groups (P=0.001)ConclusionAnxiolytic effect and Anti-Oxidative Stress Activity was seen, so taking S. lavandulifolia along with exercises may have beneficial effects on reinforcement the antioxidant system and prevention of anxiety and The negative effects of indicators related to cardiovascular disease in women with metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document