Flight Efficiency of Air-Breathing Engines

1963 ◽  
Vol 14 (3) ◽  
pp. 211-223 ◽  
Author(s):  
S. L. Bragg

SummaryThe overall effective efficiency of a jet-propelled flight may be defined as the net useful work that is done in accelerating the vehicle, raising it to height and combating its drag, divided by the calorific value of the propellants used. The analysis presented here shows that for a single-stage vehicle this overall efficiency is equal to the integral of the fractionwith respect to each element of propellants used. In this expression u'is the effective jet velocity (allowing for jet deflection, this is √(1 + k2) times the actual exhaust velocity), υ the vehicle velocity, q the fuel/air ratio and H the calorific value of the fuel in dynamic units. The mean lift/drag ratio of the vehicle is taken as 1/k, so that the last three terms of the numerator represent the work lost in dragging, raising and accelerating each element of propellant to the range R, height h and flight velocity υ at which it is burnt. The fraction may therefore be considered as the efficiency with which that element of propellant is used with respect to the whole flight plan.For advanced air-breathing projects—by-pass engines up to aircraft speeds around Mach 2 and ramjets between Mach 4 and 9—the analysis shows that the sum of the υ-dependent terms in the efficiency factor is practically constant. The potential energy term is insignificant in the normally accepted flight corridor. Thus the overall efficiency with which propellants are consumed in covering a range R1 at flight speed υ js closely approximated to by the fractionand the useful work done by the mass mm of propellants isThe vehicle mass (including engine, payload, and so on) that can be dragged over the range R1 by unit mass of propellants can then be calculated.Although such simplified expressions cannot substitute for the final detailed analysis of a projected flight plan, it is hoped that they will prove more useful in preliminary analysis than the figures based entirely on cruise performance which have often been quoted in the past.

MRS Bulletin ◽  
1999 ◽  
Vol 24 (2) ◽  
pp. 39-43 ◽  
Author(s):  
Daniel Josell ◽  
Frans Spaepen

It is generally recognized that the capillary forces associated with internal and external interfaces affect both the shapes of liquid-vapor surfaces and wetting of a solid by a liquid. It is less commonly understood that the same phenomenology often applies equally well to solid-solid or solid-vapor interfaces.The fundamental quantity governing capillary phenomena is the excess free energy associated with a unit area of interface. The microscopic origin of this excess free energy is often intuitively simple to understand: the atoms at a free surface have “missing bonds”; a grain boundary contains “holes” and hence does not have the optimal electronic density; an incoherent interface contains dislocations that cost strain energy; and the ordering of a liquid near a solid-liquid interface causes a lowering of the entropy and hence an increase in the free energy. In what follows we shall show how this fundamental quantity determines the shape of increasingly complex bodies: spheres, wires, thin films, and multilayers composed of liquids or solids. Crystal anisotropy is not considered here; all interfaces and surfaces are assumed isotropic.Consideration of the equilibrium of a spherical drop of radius R with surface free energy γ shows that pressure inside the droplet is higher than outside. The difference is given by the well-known Laplace equation:This result can be obtained by equating work done against internal and external pressure during an infinitesimal change of radius with the work of creating a new surface.


2009 ◽  
Vol 51 (3) ◽  
pp. 659-667 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet n be a positive integer. In this paper, we consider the diophantine equation We prove that this equation has only the positive integer solutions (n, x, y, z) = (1, t, 1, 1), (1, t, 3, 2), (3, 2, 2, 2). Therefore we extend the work done by Leszczyński (Wiadom. Mat., vol. 3, 1959, pp. 37–39) and Makowski (Wiadom. Mat., vol. 9, 1967, pp. 221–224).


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Mohammad D. Qandil ◽  
Ahmad I. Abbas ◽  
Tarek ElGammal ◽  
Ahmad I. Abdelhadi ◽  
Ryoichi S. Amano

Abstract The main purpose of this study is to numerically correlate the amount of generated vapor over a hydrofoil to the lift and drag coefficients acting on it. Cavitation characteristics were investigated of a hydrofoil in the cavitating, sub-cavitating, and non-cavitating flows for different angles of attacks (AoA) with the high upstream flow velocity. The hydrofoil was tested in a square water tunnel with water entering the tunnel at various velocities for each AoA ranges from 9.1 m/s to 12.2 m/s. It was found that lift and drag forces acting on the hydrofoil follow the trend of the experimental data quite closely. While the cavitation can be identified by a unique number (averaged vapor volume fraction), the work done created an inverse correlation between this number and the cavitation number at the same angle of attack. The lift force declines with the increase in the vapor content on the hydrofoil surface, meanwhile the drag force peaks at certain vapor volume fraction, and then, a huge reduction occurs with the considerable decrease in the corresponding cavitation number. A fourth-order correlation generated between the lift to drag (L/D) and the cavitation number (σ). It was found the lift-to-drag ratio decreases by the formation of the cavitation over the hydrofoil, thus causing a drop in the efficiency of the turbomachines.


1970 ◽  
Vol 53 (3) ◽  
pp. 529-545 ◽  
Author(s):  
G. M. HUGHES ◽  
R. L. SUNDERS

1. Unanaesthetized rainbow trout, when subjected to a lowered Po2 of the inspired water, show an increase in amplitude of pressures recorded from the buccal and opercular cavities. Pressure amplitudes were commonly found to be 0.5 cm of water in resting trout and increased 4- or 5-fold as inspired Po2 was reduced. Differential pressures across the gills also increased with hypoxia. 2. Typically the minute volume in a 400-600 g trout increased from about 0.2 to 0.6 l/kg/min when the inspired Po2 was lowered from 150 to 80 mm Hg, but rose to 1-5l/kg/min at lower Po2. Increased minute volumes are mainly due to increases in stroke volume; respiratory frequency remains fairly constant at Po2 's above about 8o mm Hg. 3. The relation between differential pressure and minute volume is fairly linear over much of the range, but minute volume increases more rapidly than differential pressure. 4. Oxygen consumption of the non-swimming fish increases during hypoxia and is related to the increased ventilation and differential pressure across the gills. 5. Estimates of the oxygen cost of breathing were made from the increased oxygen consumption during hyperventilation. Comparison of these estimates with estimates of the work done, using the pressure and volume measurements, gave figures for the overall efficiency of the pumping mechanism of about 10%.


Author(s):  
Carolyn Nohr ◽  
Ann Ayres

Texts on electron diffraction recommend that the camera constant of the electron microscope be determine d by calibration with a standard crystalline specimen, using the equation


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Sign in / Sign up

Export Citation Format

Share Document