Surfaces, Interfaces, and Changing Shapes in Multilayered Films

MRS Bulletin ◽  
1999 ◽  
Vol 24 (2) ◽  
pp. 39-43 ◽  
Author(s):  
Daniel Josell ◽  
Frans Spaepen

It is generally recognized that the capillary forces associated with internal and external interfaces affect both the shapes of liquid-vapor surfaces and wetting of a solid by a liquid. It is less commonly understood that the same phenomenology often applies equally well to solid-solid or solid-vapor interfaces.The fundamental quantity governing capillary phenomena is the excess free energy associated with a unit area of interface. The microscopic origin of this excess free energy is often intuitively simple to understand: the atoms at a free surface have “missing bonds”; a grain boundary contains “holes” and hence does not have the optimal electronic density; an incoherent interface contains dislocations that cost strain energy; and the ordering of a liquid near a solid-liquid interface causes a lowering of the entropy and hence an increase in the free energy. In what follows we shall show how this fundamental quantity determines the shape of increasingly complex bodies: spheres, wires, thin films, and multilayers composed of liquids or solids. Crystal anisotropy is not considered here; all interfaces and surfaces are assumed isotropic.Consideration of the equilibrium of a spherical drop of radius R with surface free energy γ shows that pressure inside the droplet is higher than outside. The difference is given by the well-known Laplace equation:This result can be obtained by equating work done against internal and external pressure during an infinitesimal change of radius with the work of creating a new surface.

1985 ◽  
Vol 49 (353) ◽  
pp. 515-521 ◽  
Author(s):  
M. L. Pascal ◽  
J. Roux

AbstractThree ion exchange equilibrium isotherms between muscovite-paragonite solid solution and 2-molal KCl-NaCl aqueous solutions have been studied at (1) 420°C 1 kbar, (2) 420°C, 2 kbar, and (3) 550°C, 2 kbar. The ΔG°(Joules) ± 2σ of the ion exchange reaction are: ΔG° (1) = −17 259±686, ΔG° (2) = −18 268 ± 560, ΔG° (3) = −16018 ± 336. The excess mixing parameters (‘subregular solution’) of the solid solution (at 1 bar) have been calculated:The corresponding binodal compositions are (muscovite mol fraction): 12–56% at 420 °C, 1 bar and 15–51% at 550 °C 1 bar. The compositions of micas in equilibrium with perthites (high structural state) at 400, 500, 600 °C and 2 kbar are respectively: Xmus = 91, 86, and 82%.The mixing properties of the solution were estimated using the speciation of two molal chloride solutions calculated from the dissociation constants of NaCl and KCl in aqueous solution. Although NaCl appears to be substantially more dissociated than KCl, the resulting excess free energy of mixing of the hydrothermal (Na,K)Cl solution was found less than 500 J at temperatures above 400 °C and pressures up to 2 kbar.The difference in Gibbs free energy of formation (from the elements at 25 °C, 1 bar) between NaCl and KCl in two molal aqueous solutions is proposed:


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


Author(s):  
I.N. Yadhikov ◽  
S.K. Maksimov

Convergent beam electron diffraction (CBED) is widely used as a microanalysis tool. By the relative position of HOLZ-lines (Higher Order Laue Zone) in CBED-patterns one can determine the unit cell parameters with a high accuracy up to 0.1%. For this purpose, maps of HOLZ-lines are simulated with the help of a computer so that the best matching of maps with experimental CBED-pattern should be reached. In maps, HOLZ-lines are approximated, as a rule, by straight lines. The actual HOLZ-lines, however, are different from the straights. If we decrease accelerating voltage, the difference is increased and, thus, the accuracy of the unit cell parameters determination by the method becomes lower.To improve the accuracy of measurements it is necessary to give up the HOLZ-lines substitution by the straights. According to the kinematical theory a HOLZ-line is merely a fragment of ellipse arc described by the parametric equationwith arc corresponding to change of β parameter from -90° to +90°, wherevector, h - the distance between Laue zones, g - the value of the reciprocal lattice vector, g‖ - the value of the reciprocal lattice vector projection on zero Laue zone.


1960 ◽  
Vol 27 (1) ◽  
pp. 19-32 ◽  
Author(s):  
W. H. Alexander ◽  
F. B. Leech

SummaryTen farms in the county of Durham took part in a field study of the effects of feeding and of udder disease on the level of non-fatty solids (s.n.f.) in milk. Statistical analysis of the resulting data showed that age, pregnancy, season of the year, and total cell count affected the percentage of s.n.f. and that these effects were additive and independent of each other. No effect associated with nutritional changes could be demonstrated.The principal effects of the factors, each one freed from effects of other factors, were as follows:Herds in which s.n.f. had been consistently low over a period of years were compared with herds in which s.n.f. had been satisfactory. Analysis of the data showed that about 70% of the difference in s.n.f. between these groups could be accounted for by differences in age of cow, stage of lactation, cell count and breed.There was some evidence of a residual effect following clinical mastitis that could not be accounted for by residual high cell counts.The within-cow regression of s.n.f. on log cell count calculated from the Durham data and from van Rensburg's data was on both occasions negative.The implications of these findings are discussed, particularly in relation to advisory work.


2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


2011 ◽  
Vol 85 (3) ◽  
pp. 463-475 ◽  
Author(s):  
MEI-RU CHEN ◽  
ZONG-XUAN CHEN

AbstractIn this paper, we investigate properties of finite-order transcendental meromorphic solutions, rational solutions and polynomial solutions of the difference Painlevé I equation where a, b and c are constants, ∣a∣+∣b∣≠0.


1994 ◽  
Vol 343 ◽  
Author(s):  
S.C. Wardle ◽  
B.L. Adams ◽  
C.S. Nichols ◽  
D.A. Smith

ABSTRACTIt is well known from studies of individual interfaces that grain boundaries exhibit a spectrum of properties because their structure is misorientation dependent. Usually this variability is neglected and properties are modeled using a mean field approach. The limitations inherent in this approach can be overcome, in principle, using a combination of experimental techniques, theory and modeling. The bamboo structure of an interconnect is a particularly simple polycrystalline structure that can now be readily characterized experimentally and modeled in the computer. The grain misorientations in a [111] textured aluminum line have been measured using the new automated technique of orientational imaging microscopy. By relating boundary angle to diffusivity the expected stress voiding failure processes can be predicted through the link between misorientation angle, grain boundary excess free energy and diffusivity. Consequently it can be shown that the high energy boundaries are the favored failure sites thermodynamically and kinetically.


1974 ◽  
Vol 94 ◽  
pp. 100-113 ◽  
Author(s):  
Maurice Pope

In discussions of Aeschylus' theology one of the passages most often quoted is the so-called ‘hymn to Zeus’ in the first chorus of the Agamemnon (Ag. 160–83). Fraenkel in his commentary goes so far as to call it ‘the corner-stone not only of this play but of the whole trilogy’. The passage concludes with two lines which in all modern editions are read as a statement, though our oldest manuscript, the Medicean, writes them as a question. Textually the difference is merely one of accent, but the difference of accent carries with it a reversal of meaning. As a statement the lines mean that the gods are something to be grateful for, that there is some χάρις or kindness associated with them. Taken as a question they deny this. Clearly then it is of great importance for the interpretation of Aeschylus to decide which is the correct reading.The lines in question, written without accents, areOur oldest manuscript, M, as I have said, writes ποῦ with an accent. So does our next oldest, the manuscript 468 of the Biblioteca di San Marco, generally known as V. If this reading stems uncorrupted from the time when accents were first applied to the text of Aeschylus and if at that time the oral tradition of the poet's words was not yet dead, then it will not be destitute of authority. But the thread is far too tenuous to bear any weight of proof.Equally there can be no argument from authority on the side of reading the lines as a statement. For though Triclinius and the closely associated manuscript F write που without an accent as an enclitic, this is as likely as not to be due to simple conjecture.


The present paper describes an investigation of diffusion in the solid state. Previous experimental work has been confined to the case in which the free energy of a mixture is a minimum for the single-phase state, and diffusion decreases local differences of concentration. This may be called ‘diffusion downhill’. However, it is possible for the free energy to be a minimum for the two-phase state; diffusion may then increase differences of concentration; and so may be called ‘diffusion uphill’. Becker (1937) has proposed a simple theoretical treatment of these two types of diffusion in a binary alloy. The present paper describes an experimental test of this theory, using the unusual properties of the alloy Cu 4 FeNi 3 . This alloy is single phase above 800° C and two-phase at lower temperatures, both the phases being face-centred cubic; the essential difference between the two phases is their content of copper. On dissociating from one phase into two the alloy develops a series of intermediate structures showing striking X-ray patterns which are very sensitive to changes of structure. It was found possible to utilize these results for a quantitative study of diffusion ‘uphill’ and ‘downhill’ in the alloy. The experimental results, which can be expressed very simply, are in fair agreement with conclusions drawn from Becker’s theory. It was found that Fick’s equation, dc / dt = D d2c / dx2 , can, within the limits of error, be applied in all cases, with the modification that c denotes the difference of the measured copper concentration from its equilibrium value. The theory postulates that D is the product of two factors, of which one is D 0f the coefficient of diffusion that would be measured if the alloy were an ideal solid solution. The theory is able to calculate D/D 0 , if only in first approximation, and the experiments confirm this calculation. It was found that in most cases the speed of diffusion—‘uphill’ or ‘downhill’—has the order of magnitude of D 0 . * Now with British Electrical Research Association.


Sign in / Sign up

Export Citation Format

Share Document