The Prediction of the Axisymmetric Turbulent Jet Issuing into a Co-Flowing Stream

1974 ◽  
Vol 25 (1) ◽  
pp. 69-80 ◽  
Author(s):  
R A Antonia ◽  
R W Bilger

SummaryThree analyses are presented for predicting the development of an axisymmetric turbulent jet issuing into a co-flowing external air stream. The first analysis is analogous to a method used by Patel to predict the growth of a two-dimensional jet in an external air stream. The method is found to be inadequate when the excess velocity on the axis of the jet becomes small compared with the external stream velocity. The second analysis assumes that the turbulence structure is similar at different streamwise stations but it breaks down when the advection of turbulent energy becomes comparable with the turbulent energy production. In the third approach, a two-parameter model of turbulence developed by Rodi and Spalding, which uses two differential equations for the turbulent energy and the length scale of the turbulence respectively, is found to predict closely the experimental results of Antonia and Bilger for a ratio of jet to external stream velocity of 3.0. The success of this last method emphasises the non-similar character of turbulence.

1997 ◽  
Vol 119 (4) ◽  
pp. 265-270 ◽  
Author(s):  
N. Papanikolaou ◽  
I. Wierzba

The effect of the burner configuration and fuel composition on the stability limits of jet diffusion flames issuing into a co-flowing air stream is presented. Circular and elliptic nozzles of various lip thicknesses and aspect ratios were employed with methane as the primary fuel and hydrogen, carbon dioxide, and nitrogen as additives. It was found that the effects of nozzle geometry, fuel composition, and co-flowing stream velocity on the blowout limits were highly dependent on the type of flame stabilization mechanism, i.e., whether lifted or rim-attached, just prior to blowout. The blowout behavior of lifted flames did not appear to be significantly affected by a change in the nozzle shape as long as the discharge area remained constant, but it was greatly affected by the fuel composition. In contrast, attached flame stability was influenced by both the fuel composition and the nozzle geometry which had the potential to extend the maximum co-flowing stream velocity without causing the flame to blow out. The parameters affecting the limiting stream velocity were studied.


1962 ◽  
Vol 84 (3) ◽  
pp. 235-242 ◽  
Author(s):  
R. A. Seban ◽  
L. H. Back

The effectiveness and the heat transfer have been measured in a system involving the tangential injection of air from a single spanwise slot into the turbulent boundary layer of an external air stream, with the velocity of the external stream increasing in a way that concentrated the acceleration in a region downstream of the initial mixing zone. The effectiveness was changed but little from the value that would have existed had the free-stream velocity remained at its initial value and both temperature profiles and analytical considerations show that this invariability of the effectiveness is associated with thermal boundary-layer thicknesses that are much larger than the hydrodynamic thicknesses. Heat-transfer coefficients are shown to be predictable from existing information provided that the momentum thickness Reynolds number is large enough.


1996 ◽  
Vol 118 (2) ◽  
pp. 134-139 ◽  
Author(s):  
N. Papanikolaou ◽  
I. Wierzba

The effects of changes in the jet nozzle geometry, i.e., nozzle shape and lip thickness, on the blowout limits of jet diffusion flames in a co-flowing air stream were experimentally investigated for a range of co-flow air stream velocities. Circular and elongated nozzles of different axes rations were employed. Preliminary results showed that nozzles with low major-to-minor axes ratios improved, while high ratios reduced, the blowout limit of attached flames compared with that for an equivalent circular nozzle. The nozzle shape had no apparent influence on the blowout limits lifted flames and the limiting stream velocity. The experimental blowout limits of lifted flames were found to be a function of the co-flowing stream velocity and jet discharge area. On the other hand, the stability of attached flames was a function of the co-flowing stream velocity, jet discharge area as well as the nozzle shape. The effect of premixing a fuel with the surrounding air was also studied. Generally, the introduction of auxiliary fuel into the surrounding stream either increased or decreased the blowout limit depending on the type of flame stabilization mechanism prior to blowout. The stability mechanism of the flame was found to be a function of the co-flow stream velocity and the auxiliary fuel employed.


Author(s):  
M. Karbasi ◽  
I. Wierzba

The stability behaviour of jet diffusion flames in a co-flowing stream of air was examined. Their lift-off, reattachment and blowout limits were established for methane, propane, ethylene and hydrogen. The co-flowing air stream velocity affected significantly the mechanism of flame stabilization. Different flow regimes where the blowout of lifted flames or attached flames can occur were recognized. A transition region in which both the blowout of lifted flames as well as that of attached flames was observed and identified with respect to the value of the air stream velocity. It was found that the blowout limits for lifted flames in this region were much smaller than for the attached flames. The effects of changes in the nozzle geometry and co-flowing stream composition were also considered.


1981 ◽  
Vol 110 ◽  
pp. 171-194 ◽  
Author(s):  
C. Chandrsuda ◽  
P. Bradshaw

Hot-wire measurements of second- and third-order mean products of velocity fluctuations have been made in the flow behind a backward-facing step with a thin, laminar boundary layer at the top of the step. Measurements extend to a distance of about 12 step heights downstream of the step, and include parts of the recirculating-flow region: approximate limits of validity of hot-wire results are given. The Reynolds number based on step height is about 105, the mixing layer being fully turbulent (fully three-dimensional eddies) well before reattachment, and fairly close to self-preservation in contrast to the results of some previous workers. Rapid changes in turbulence quantities occur in the reattachment region: Reynolds shear stress and triple products decrease spectacularly, mainly because of the confinement of the large eddies by the solid surface. The terms in the turbulent energy and shear stress balances also change rapidly but are still far from the self-preserving boundary-layer state even at the end of the measurement region.


1949 ◽  
Vol 2 (4) ◽  
pp. 451 ◽  
Author(s):  
AA Townsend

Extending previous work on turbulent diffusion in the wake of a circular-cylinder, a series of measurements have been made of the turbulent transport of mean stream momentum, turbulent energy, and heat in the wake of a cylinder of 0.169 cm. diameter, placed in an air-stream of velocity 1280 cm. sec.-1. It has been possible to extend the measurements to 960 diameters down-stream from the cylinder, and it 1s found that, at distances in excess of 600 diameters, the requirements of dynamical similarity are very nearly satisfied. To account for the observed rates of transport of turbulent energy and heat, it is necessary that only part of this transport be due to bulk convection by the slow large-scale motion of the jets of turbulent fluid emitted by the central, fully turbulent core of the wake, which had been supposed previously to perform most of the transport. The remainder of the transport is carried out by the small-scale diffusive motion of the turbulent eddies within the jets, and may be described by assigning diffusion coefficients to the turbulent fluid. It is found that the diffusion coefficients for momentum and heat are approximately equal, but that for turbulent energy is considerably smaller. On the basis of these hypotheses, it is possible to calculate $he form of the mean velocity distribution in good agreement with experiment, and to give a qualitative explanation of the apparently more rapid diffusion of heat.


2020 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Abdul Aziz Rohman Hakim ◽  
Engkos Achmad Kosasih

This paper discusses heat and mass transfer in cooling tower fill. In this research, dry bulb temperature at the bottom fill, ambient relative humidity, air stream velocity entering fill, dry bulb temperature leaving the fill, relative humidity of air leaving the fill, inlet and outlet water temperature of cooling tower were measured. Those data used in heat and mass transfer calculation in cooling tower fill. Then, do the heat and mass transfer calculation based on proposed approch. The results are compared with design data. The design and analogy method showed different  result. The parameter which influence the heat transfer at cooling tower are represented by coefficient of heat transfer hl and coefficient of mass transfer k­l. The differencies result between design and analogy method shows that there is important parameter which different. Deeply study needed for it.


Author(s):  
A.C. Benim ◽  
K. Ozkan ◽  
M. Cagan ◽  
D. Gunes

PurposeThe main purpose of the paper is the validation of a broad range of RANS turbulence models, for the prediction of flow and heat transfer, for a broad range of boundary conditions and geometrical configurations, for this class of problems.Design/methodology/approachTwo‐ and three‐dimensional computations are performed using a general‐purpose CFD code based on a finite volume method and a pressure‐correction formulation. Special attention is paid to achieve a high numerical accuracy by applying second order discretization schemes and stringent convergence criteria, as well as performing sensitivity studies with respect to the grid resolution, computational domain size and boundary conditions. Results are assessed by comparing the predictions with the measurements available in the literature.FindingsA rather unsatisfactory performance of the Reynolds stress model is observed, in general, although the contrary has been expected in this rotating flow, exhibiting a predominantly non‐isotropic turbulence structure. The best overall agreement with the experiments is obtained by the k‐ω model, where the SST model is also observed to provide a quite good performance, which is close to that of the k‐ω model, for most of the investigated cases.Originality/valueTo date, computational investigation of turbulent jet impinging on to “rotating” disk has not received much attention. To the best of the authors' knowledge, a thorough numerical analysis of the generic problem comparable with present study has not yet been attempted.


1993 ◽  
Vol 115 (2) ◽  
pp. 142-147 ◽  
Author(s):  
I. Wierzba ◽  
K. Kar ◽  
G. A. Karim

The blowout limits of a methane diffusion flame in a co-flowing air-fuel or air-diluent stream were determined for a range of surrounding co-flow stream velocities, both laminar and turbulent, up to ~ 1.50 m/s. Methane, ethylene, propane and hydrogen were used as the fuels in the surrounding co-flow stream while nitrogen and carbon dioxide were used as diluents. The experimental results show that the velocity of the surrounding stream affects the blowout phenomena significantly. An increase in the stream velocity has a detrimental effect on the blowout limits at very low velocities up to 0.30 m/s (essentially laminar flow) and at velocities higher than 1.50 m/s (turbulent flow). The addition of a fuel to the air stream in most cases enhances the blowout limit of a methane diffusion flame. However, different trends in the variation of the blowout limits with the surrounding fuel concentration were observed, depending on the type of fuel used and on whether the surrounding coflow stream was laminar or turbulent. The addition of nitrogen or carbon dioxide to the air stream results in decreasing the blowout limits. The effect is more severe at the higher velocities.


Sign in / Sign up

Export Citation Format

Share Document