scholarly journals African plant foods rich in non-starch polysaccharides reduce postprandial blood glucose and insulin concentrations in healthy human subjects

1998 ◽  
Vol 80 (5) ◽  
pp. 419-428 ◽  
Author(s):  
Uchenna A. Onyechi ◽  
Patricia A. Judd ◽  
Peter R. Ellis

The effects of two vegetable flours, prepared from the African plants Detarium senegalense Gmelin, a legume, and Cissus rotundifolia, a shrub, on postprandial blood glucose and insulin concentrations in human subjects, were investigated. Chemical analysis indicated that these flours contained significant amounts of NSP. The detarium in particular was found to be a rich source of water-soluble NSP (SNSP). The flours were incorporated into two types of breakfast meal, a stew meal and a wheat bread meal, containing 50 g and 70 g available carbohydrate respectively. Both meals also contained 10–12g NSP, the major fraction of which was SNSP. Control and fibre-rich meals were consumed on separate days in randomized order by two different groups of subjects (n 5, stew meals; n 10, bread meals). Venous blood samples were taken at fasting (0 min) and postprandially at 30 min intervals for 2·5 h and the plasma analysed for glucose and insulin. Compared with the controls, detarium and cissus meals elicited significant reductions (P < 0·006) in plasma glucose levels at most postprandial time points and for area-under-the-curve (AUC) values (AUC reductions 38–62%). Significant reductions (P < 0·002) in plasma insulin levels at various postprandial time points and for AUC values were also seen after detarium and cissus breads (AUC reductions 43 and 36% respectively), but not after the fibre-rich stew meals. SNSP and starch are possibly the main, but not the only, components responsible for the glucose- and insulin-lowering effects of cissus flour. The main SNSP fraction of detarium, identified as a high-molecular-weight xyloglucan, is likely to be a primary factor in determining the physiological activity of detarium flour.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 618
Author(s):  
Riley Larson ◽  
Courtney Nelson ◽  
Renee Korczak ◽  
Holly Willis ◽  
Jennifer Erickson ◽  
...  

Acacia gum (AG) is a non-viscous soluble fiber that is easily incorporated into beverages and foods. To determine its physiological effects in healthy human subjects, we fed 0, 20, and 40 g of acacia gum in orange juice along with a bagel and cream cheese after a 12 h fast and compared satiety, glycemic response, gastrointestinal tolerance, and food intake among treatments. Subjects (n = 48) reported less hunger and greater fullness at 15 min (p = 0.019 and 0.003, respectively) and 240 min (p = 0.036 and 0.05, respectively) after breakfast with the 40 g fiber treatment. They also reported being more satisfied at 15 min (p = 0.011) and less hungry with the 40 g fiber treatment at 30 min (p = 0.012). Subjects reported more bloating, flatulence, and GI rumbling on the 40 g fiber treatment compared to control, although values for GI tolerance were all low with AG treatment. No significant differences were found in area under the curve (AUC) or change from baseline for blood glucose response, although actual blood glucose with 20 g fiber at 30 min was significantly less than control. Individuals varied greatly in their postprandial glucose response to all treatments. AG improves satiety response and may lower peak glucose response at certain timepoints, and it is well tolerated in healthy human subjects. AG can be added to beverages and foods in doses that can help meet fiber recommendations.


2015 ◽  
Vol 24 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Rita Lahirin ◽  
Inge Permadhi ◽  
Ninik Mudjihatini ◽  
Rahmawaty Ridwan ◽  
Ray Sugianto

Background: Green tea contains catechins that have inhibitory effects on amylase, sucrase, and sodium-dependent glucose transporter (SGLT) which result in lowering of postprandial blood glucose (PBG). This beneficial effect has been widely demonstrated using the usual dose (UD) of green tea preparation. Our study was aimed to explore futher lowering of PBG using high dose (HD) of green tea in healthy adolescents. Methods: 24 subjects received 100 mL infusion of either 0.67 or 3.33 grams of green tea with test meal. Fasting, PBG at 30, 60, 120 minutes were measured. Subjects were cross-overed after wash out. PBG and its incremental area under the curve (IAUC) difference between groups were analyzed with paired T-test. Cathecin contents of tea were measured using high-performance liquid chromatography (HPLC). Results: The PBG of HD group was lower compared to UD (at 60 minutes =113.70 ± 13.20 vs 124.16 ± 8.17 mg/dL, p = 0.005; at 120 minutes = 88.95 ± 6.13 vs 105.25 ± 13.85 mg/dL, p < 0.001). The IAUC of HD was also found to be lower compared to UD (2055.0 vs 3411.9 min.mg/dL, p < 0.001). Conclusion: Additional benefit of lowering PBG can be achieved by using higher dose of green tea. This study recommends preparing higher dose of green tea drinks for better control of PBG.


2010 ◽  
Vol 104 (6) ◽  
pp. 803-806 ◽  
Author(s):  
Jing Ma ◽  
Jessica Chang ◽  
Helen L. Checklin ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
...  

It has been reported that the artificial sweetener, sucralose, stimulates glucose absorption in rodents by enhancing apical availability of the transporter GLUT2. We evaluated whether exposure of the proximal small intestine to sucralose affects glucose absorption and/or the glycaemic response to an intraduodenal (ID) glucose infusion in healthy human subjects. Ten healthy subjects were studied on two separate occasions in a single-blind, randomised order. Each subject received an ID infusion of sucralose (4 mm in 0·9 % saline) or control (0·9 % saline) at 4 ml/min for 150 min (T = − 30 to 120 min). After 30 min (T = 0), glucose (25 %) and its non-metabolised analogue, 3-O-methylglucose (3-OMG; 2·5 %), were co-infused intraduodenally (T = 0–120 min; 4·2 kJ/min (1 kcal/min)). Blood was sampled at frequent intervals. Blood glucose, plasma glucagon-like peptide-1 (GLP-1) and serum 3-OMG concentrations increased during ID glucose/3-OMG infusion (P < 0·005 for each). However, there were no differences in blood glucose, plasma GLP-1 or serum 3-OMG concentrations between sucralose and control infusions. In conclusion, sucralose does not appear to modify the rate of glucose absorption or the glycaemic or incretin response to ID glucose infusion when given acutely in healthy human subjects.


1986 ◽  
Vol 55 (1) ◽  
pp. 43-47 ◽  
Author(s):  
N. W. Read ◽  
I. McL. Welch ◽  
C. J. Austen ◽  
C. Barnish ◽  
C. E. Bartlett ◽  
...  

1. The degree to which disruption by mastication affects the glycaemic response to four different carbohydrate foods was investigated in healthy human volunteers; each food was eaten by six subjects.2. Subjects ate meals of sweetcorn, white rice, diced apple or potato on two occasions; on one occasion they chewed the food thoroughly, on the other occasion they swallowed each mouthful without chewing it.3. When the foods were chewed the postprandial blood glucose levels rose to levels which vaned according to the food ingested.4. Swallowing without chewing reduced the glycaemic response to each food, achieving a similar effect as administration of viscous polysaccharides or ‘slow-release’ carbohydrates.


2018 ◽  
Author(s):  
Liege Teixeira ◽  
Caroline Fredrich Dourado Pinto ◽  
Alexandre de Mello Kessler ◽  
Luciano Trevizan

AbstractSorghum is used as a substitute of rice in dog food, owing to its nutritional similarity and low cost. However, its use has been associated with negative effects, like a reduction in palatability, digestibility, and enzyme activity, which can decrease nutrient absorption. The presence of condensed tannins (CT) in sorghum may cause these effects. Another tannin group, the hydrolysable tannins (HT), is known for its antioxidant properties. Research has shown the nutritional effects of sorghum on dogs, but the effect of HT on dogs remains unknown. We evaluated the effects of substituting rice with sorghum containing CT and inclusion of commercial extract of HT on digestibility, fecal and urinary characteristics, and postprandial blood glucose levels in adult dogs. Nine adult Beagle were randomly subjected to 4 treatments: 50% rice; (RS) 25% rice + 25% sorghum; (RHT) 50% rice + 0.10% HT; (RSHT) 25% rice + 25% sorghum + 0,10% HT. Tannins did not affect food intake. The digestibility of dry matter, organic matter, crude protein, acid hydrolyzed fat, gross energy, and metabolizable energy (ME) decreased with sorghum inclusion (P < 0.05). Sorghum also decreased protein digestibility (P < 0.05). Greater fecal dry matter was observed with the RHT diet. HT associated with sorghum reduced ME (P < 0.05). Sorghum inclusion enhanced fecal output, without altering fecal score (P > 0.05). No alterations in urinary characteristics were observed. Sorghum and HT did not affect the postprandial blood glucose response measured by the area under the curve (P > 0.05). The substitution of rice by sorghum negatively affected protein absorption and ME of the diets. Sorghum can be considered as a good source of carbohydrates in therapeutic diets for weight control. HT may potentiate the effect of CT, but more research is needed to evaluate its potential use in dog nutrition.


2007 ◽  
Vol 103 (3) ◽  
pp. 926-931 ◽  
Author(s):  
Robyn M. Murphy ◽  
Craig A. Goodman ◽  
Michael J. McKenna ◽  
Jason Bennie ◽  
Murray Leikis ◽  
...  

The function and normal regulation of calpain-3, a muscle-specific Ca2+-dependent protease, is uncertain, although its absence leads to limb-girdle muscular dystrophy type 2A. This study examined the effect of eccentric exercise on calpain-3 autolytic activation, because such exercise is known to damage sarcomeric structures and to trigger adaptive changes that help prevent such damage on subsequent exercise. Six healthy human subjects performed a 30-min bout of one-legged, eccentric, knee extensor exercise. Torque measurements, vastus lateralis muscle biopsies, and venous blood samples were taken before and up to 7 days following the exercise. Peak isometric muscle torque was depressed immediately and at 3 h postexercise and recovered by 24 h, and serum creatine kinase concentration peaked at 24 h postexercise. The amount of autolyzed calpain-3 was unchanged immediately and 3 h after exercise, but increased markedly (from ∼16% to ∼35% of total) 24 h after the exercise, and returned to preexercise levels within 7 days. In contrast, the eccentric exercise produced little autolytic activation of the ubiquitous Ca2+-activated protease, μ-calpain. Eccentric exercise is the first physiological circumstance shown to result in calpain-3 activation in vivo.


1998 ◽  
Vol 72 (8) ◽  
pp. 923-931 ◽  
Author(s):  
Yoriko DEGUCHI ◽  
Kuniko OSADA ◽  
Kazumi UCHIDA ◽  
Hiroko KIMURA ◽  
Masaki YOSHIKAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document