Comparison of the winter development, reproduction and lifespan of viviparae of Sitobion avenae (F.) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat and perennial rye grass in England

1987 ◽  
Vol 77 (1) ◽  
pp. 35-43 ◽  
Author(s):  
C. T. Williams

AbstractThe mid-winter development, reproduction and survival of field-acclimatized viviparae of Sitobion avenae (F.) and Rhopalosiphum padi (L.) on leaves of tillering wheat and perennial ryegrass (Lolium perenne) plants at similar growth stages were compared by monitoring batches of aphids in clip-cages in field plots in southern England. For both aphid species, survival, total fecundity and reproductive rate were much higher on wheat than on L. perenne, and on both host-plants they were much higher for S. avenae than for R. padi. Development times (in day-degrees) were longer on L. perenne than on wheat, and on both host-plants were longer for R. padi than for S. avenae, though these differences were less marked. Comparison of the results with those of earlier studies suggests that large changes in cereal aphid performance occur between summer and winter and that these are both aphid-specific and host-plant-specific.

2007 ◽  
Vol 139 (6) ◽  
pp. 850-863 ◽  
Author(s):  
Samuel M. Migui ◽  
Robert J. Lamb

AbstractThe susceptibilities of genetically diverse Canadian spring wheats, Triticum aestivum L. and Triticum durum Desf., to three aphid species, Rhopalosiphum padi (L.), Sitobion avenae (Fabricius), and Schizaphis graminum (Rondani), were investigated. Trophic interactions measured as changes in biomass of aphids and wheat plants were used to quantify levels of resistance, components of resistance, and impact of aphids on yield. Plants in field cages were infested with small numbers of aphids for 21 days at heading. These plants were usually more suitable for the development of S. avenae and S. graminum than of R. padi. Partial resistance, measured as seed production by infested plants as a proportion of that by a control, varied from 11% to 59% for different aphid species and wheat classes when all wheat plants were infested at the same stage. Cultivars within wheat classes responded similarly to each of the aphid species. None of the wheat cultivars showed agriculturally effective levels of antibiosis. The specific impact of each aphid species and wheat class varied from 5 to 15 mg of plant biomass lost for each milligram of biomass gained by the aphids. Canadian Western Red Spring wheat had a lower specific impact and therefore was more tolerant to aphids than the other two classes, but not tolerant enough to avoid economic damage at the aphid densities observed. Plants did not compensate for feeding damage after aphid feeding ceased, based on the higher specific impacts observed for mature plants than for plants that were heading. The interactions between aphids and plants show that current economic thresholds probably underestimate the damage caused by cereal aphids to Canadian spring wheat.


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 54 ◽  
Author(s):  
Ibtissem Ben Fekih ◽  
Annette Bruun Jensen ◽  
Sonia Boukhris-Bouhachem ◽  
Gabor Pozsgai ◽  
Salah Rezgui ◽  
...  

Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field. Healthy colonies of the two aphid species were exposed to the same conidial shower of P. neoaphidis or E. planchoniana, in both cases from a cadaver of S. avenae. The experiments were performed under LD 18:6 h at 21 °C and a successful transmission was monitored for a period of nine days after initial exposure. Susceptibility of both S. avenae and R. padi to fungal infection showed a sigmoid trend. The fitted nonlinear model showed that the conspecific host, S. avenae, was more susceptible to E. planchoniana infection than the heterospecific host R. padi, was. In the case of P. neoaphidis, LT50 for S. avenae was 5.0 days compared to 5.9 days for R. padi. For E. planchoniana, the LT50 for S. avenae was 4.9 days, while the measured infection level in R. padi was always below 50 percent. Our results suggest that transmission from conspecific aphid host to heterospecific aphid host can occur in the field, but with expected highest transmission success to the conspecific host.


2011 ◽  
Vol 39 (No. 2) ◽  
pp. 61-64 ◽  
Author(s):  
V. Jarošík ◽  
A. Honěk ◽  
A. Tichopád

Population growths of three aphid species colonising winter wheat stands, Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae, were analysed by regression method. The calculations were based on counts in 268 winter wheat plots at 3 or 7 day intervals over 10 (leaves) or 6 (ears) years. The population dynamics of a particular species differed widely between years. Density independent exponential growth of the population was most common, but its rate differed significantly between species, and for S. avenae also between populations on leaves and ears, on which the populations grew fastest. Field estimates of the intrinsic rate of increase derived from the exponential growths ranged between 0.010–0.026 in M. dirhodum, 0.0071–0.011 in R. padi, and between 0.00078–0.0061 and 0.0015–0.13 in S. avenae on leaves and ears, respectively. In the populations with the most vigorous population growth, S. avenae on ears and M. dirhodum on leaves, the rate of population increase significantly decreased with increasing aphid density.  


2016 ◽  
Vol 106 (4) ◽  
pp. 551-559 ◽  
Author(s):  
Y.-H. Lu ◽  
X.-S. Zheng ◽  
X.-W. Gao

AbstractThe aphid species Sitobion avenae and Rhopalosiphum padi are the most important pests in wheat growing regions of many countries. In this study, we investigated the sublethal effects of imidacloprid on fecundity, longevity, and enzyme activity in both aphid species by comparing 3-h exposure for one or three generations. Our results indicated that 3-h exposure to sublethal doses of imidacloprid for one generation had no discernible effect on the survival, fecundity, longevity, or enzyme activity levels of aphids. However, when pulse exposures to imidacloprid were sustained over three generations, both fecundity and longevity were significantly decreased in both S. avenae and R. padi. Interestingly, the fecundity of R. padi had almost recovered by the F5 generation, but its longevity was still deleteriously affected. These results indicated that R. padi laid eggs in shorter time lags and has a more fast resilience. The change in reproduction behavior may be a phenomenon of R. padi to compensate its early death. If this is stable for the next generation, it means that the next generation is more competitive than unexposed populations, which could be the reason underlying population outbreaks that occur after longer-term exposure to an insecticide. This laboratory-based study highlights the sublethal effects of imidacloprid on the longevity and fecundity of descendants and provides an empirical basis from which to consider management decisions for chemical control in the field.


1997 ◽  
Vol 129 (6) ◽  
pp. 1079-1091 ◽  
Author(s):  
K.A. Neil ◽  
S.O. Gaul ◽  
K.B. McRae

AbstractSeasonal abundance of Sitobion avenae (F.) and Rhopalosiphum padi (L.) was monitored in Nova Scotia winter wheat plots. Rhopalosiphum padi was the more common aphid species during "heading out." Winter wheat cultivars differed in their resistance to R. padi development; the highest reproductive rate was on ’Absolvent.’ The effect of chemicals used in intensive cereal management on R. padi and Coccinella septempunctata (L.) was assessed. Dimethoate and carbaryl caused similar high mortality to both insects, but pirimicarb was more toxic to the aphid than to its predator. Over a 2-year period, field plots that received regular pirimicarb treatments for selective aphid control early in the growing season showed a 9% increase in wheat yield, compared with the checks and plots that received carbaryl. Wheat yield increased 18% when pirimicarb was used later in the season; when applied in both periods, pirimicarb gave a total yield increase of nearly 30%. Late applications of carbaryl alone, or in combination with pirimicarb, increased yields by only 9% over the controls. Half of the yield increase (18% vs. 9%) with late season control by pirimicarb was lost with the addition of carbaryl, which minimized the C. septempunctata population for nonselective insect control. Rhopalosiphum padi numbers from June 20 to July 15 had the greatest impact on yield in these plots, and natural control agents including C. septempunctata accounted for a 9% increase in yield.


1999 ◽  
Vol 35 (No. 2) ◽  
pp. 67-70
Author(s):  
H. Havlíčková ◽  
V. Holubec

Accessions of the wild Triticum species: T. boeticum, T. dicoccoides, T. urartu, and the Aegilops species:  Ae. columnaris, Ae. geniculata, Ae. markgrafii, Ae. neglecta and Ae. triuncialis in the collection of the Gene Bank of RICP Prague-Ruzyně, with T.  aestivum cv. Sandra as control, were evaluated for cereal aphid occurrence in the open during 1995–1998 period. The cereal aphid species Rhopalosiphum  padi (RP), Metopolophium dirhodum (MD) and Sitobion avenae (SA) were predominant on the plants. Variations in the abundance of individual aphid species in each year were found. The results from 1997, the optimal year for aphid occurrence, showed differences between both aphid and plant species. RP significantly dominated in Triticum species, while SA preferred Aegilops accessions. A significant negative correlation was found between RP and MD densities in the Triti­ cum spp., while MD and SA occurrence showed a negative relation to that of RP and SA in the Aegilops accessions. The individual aphid species showed a similar pattern of infestation in several genomically close accessions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257952
Author(s):  
Faisal Hafeez ◽  
Muneer Abbas ◽  
Khuram Zia ◽  
Shahbaz Ali ◽  
Muhammad Farooq ◽  
...  

Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes (‘Sehar-2006’, ‘Shafaq-2006’, ‘Faisalabad-2008’, ‘Lasani-2008’, ‘Millat-2011’ and ‘Punjab-2011’) to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids’ infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype ‘Punjab-2011’ recorded the lower aphid infestation than ‘Faisalabad-2008’, ‘Sehar-2006’, ‘Lasani-2008’ and ‘Shafaq-2006’. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011’ and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.


Sign in / Sign up

Export Citation Format

Share Document