scholarly journals Homology difference analysis of invasive mealybug speciesPhenacoccus solenopsisTinsley in Southern China with COI gene sequence variability

2014 ◽  
Vol 105 (1) ◽  
pp. 32-39 ◽  
Author(s):  
F.Z. Wu ◽  
J. Ma ◽  
X.N. Hu ◽  
L. Zeng

AbstractThe mealybug speciesPhenacoccus solenopsis(P. solenopsis) has caused much agricultural damage since its recent invasion in China. However, the source of this invasion remains unclear. This study uses molecular methods to clarify the relationships among different population ofP. solenopsisfrom China, USA, Pakistan, India, and Vietnam to determine the geographic origin of the introduction of this species into China.P. solenopsissamples were collected from 25 different locations in three provinces of Southern China. Samples from the USA, Pakistan, and Vietnam were also obtained. Parts of the mitochondrial genes for cytochrome oxidase I (COI) were sequenced for each sample. Homologous DNA sequences of the samples from the USA and India were downloaded from Gen Bank. Two haplotypes were found in China. The first was from most samples from the Guangdong, Guangxi, and Hainan populations in the China and Pakistan groups, and the second from a few samples from the Guangdong, Guangxi, Hainan populations in the China, Pakistan, India, and Vietnam groups. As shown in the maximum likelihood of trees constructed using the COI sequences, these samples belonged to two clades. Phylogenetic analysis suggested that mostP. solenopsismealybugs in Southern China are probably closely related to populations in Pakistan. The variation, relationship, expansion, and probable geographic origin ofP. solenopsismealybugs in Southern China are also discussed.

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 290
Author(s):  
Hua-Yan Chen ◽  
Hong-Liang Li ◽  
Hong Pang ◽  
Chao-Dong Zhu ◽  
Yan-Zhou Zhang

The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is an emerging invasive insect pest in China. Hymenopteran parasitoids are the key organisms for suppressing populations of P. solenopsis in the field, and therefore could be used as biological agents. Accurate identification of the associated parasitoids is the critical step to assess their potential role in biological control. In this study, we facilitated the identification of the parasitoid composition of P. solenopsis using an integrated approach of species delimitation, combining morphology with molecular data. Eighteen Hymenoptera parasitoid species belonging to 11 genera of four families are recognized based on morphological examination and molecular species delimitation of the mitochondrial cytochrome c oxidase 1 (COI) gene and the 28S rDNA using the automatic barcode gap discovery (ABGD) and the Bayesian Poisson tree processes model (bPTP). Among these species, eight species are primary parasitoids with Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae) being the dominant taxon, while the other 10 species are probably hyperparasitoids, with a prevalence of Cheiloneurus nankingensis Li & Xu (Hymenoptera: Encyrtidae). These results indicate that parasitoid wasps associated with P. solenopsis from China are diverse and the integrated taxonomic approach applied in this study could enhance the accurate identification of these parasitoids that should be assessed in future biological control programs.


2020 ◽  
Vol 26 (2) ◽  
pp. 97
Author(s):  
Melta R. Fahmi ◽  
Eni Kusrini ◽  
Erma P. Hayuningtiyas ◽  
Shofihar Sinansari ◽  
Rudhy Gustiano

The wild betta fish is a potential ornamental fish export commodity normally caught by traders or hobbyists in the wild. However, the population of wild betta in nature has declined and become a threat for their sustainability. This research was conducted to analyze the genetic diversity, phylogenetic relationships, and molecular identification through DNA COI gene sequence of Indonesian wild betta fish. A total of 92 wild betta fish specimens were collected in this study. Amplification of COI genes was carried out using Fish F1, Fish R1, Fish F2, and Fish R2 primers. The genetic diversity and phylogenetic relationships were analyzed using MEGA version 5 software program. Species identification of the specimen was conducted using BLAST program with 98-100% similarity value of the DNA sequences to indicate the same species. Phylogenetic tree construction showed seven monophyletic clades and showed that Betta smaragdina was the ancestral species of genus Betta in Indonesian waters. Genetic distance among species ranged from 0.02 to 0.30, whereas intra-species genetic distance ranged from 0 to 6.54.


2015 ◽  
Vol 90 (6) ◽  
pp. 693-697 ◽  
Author(s):  
L.S. Gasques ◽  
R.J. Graça ◽  
S.M.A.P. Prioli ◽  
R.M. Takemoto ◽  
A.J. Prioli

AbstractUrocleidoides ectoparasites are mainly found on fish of the neotropical regions. Although molecular research on monogeneans is available, no genetic data exist characterizing species in the Urocleidoides genus. Some DNA sequences have been efficacious in systematic studies and in the reconstruction of phylogenies of fish parasites. Relevant roles have been given to the sequence of the mitochondrial gene of cytochrome c oxidase I (COI). This study characterized COI sequences of the parasites Urocleidoides malabaricusi and U. cuiabai in trahira fish Hoplias aff. malabaricus of the flood plain of the Upper River Paraná, Brazil. The two species under analysis were distinguished by sequencing and analysing a 420-bp fragment of the COI gene, which suggested the existence of the cryptic species U. malabaricusi.


Zootaxa ◽  
2007 ◽  
Vol 1522 (1) ◽  
pp. 1-68 ◽  
Author(s):  
THOMAS KNEBELSBERGER ◽  
MICHAEL A. MILLER

Until recently the subaptera-group of Phyllodromica contained only one species. The revision of the subaptera-group  herein consists of the two newly described bisexual species, P. iberica and P. quadracantha, endemic to the Iberian Peninsula and a parthenogenetic species, P. subaptera (Rambur, 1838), which is widely distributed over most of the Mediterranean countries and islands. Within P. iberica three conspecific morphotypes are distinguished. The morphological characteristics of the subaptera-group are described. The species and their distributions are described and depicted. A key for the morphological determination of P. quadracantha and the morphotypes of P. iberica is given. DNA sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene are included in the species descriptions. The sequence data are suitable for species identification (DNA barcodes). A cladistic analysis of the morphological data and a phylogenetic analysis of the DNA sequences were performed to infer the phylogenetic relationships between the species of the subaptera-group.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. Malik ◽  
A. Javid ◽  
Hamidullah ◽  
M. A. Iqbal ◽  
A. Hussain ◽  
...  

Abstract The present study reports the existence of cliff racer, Platyceps rhodorachis from the plains of Punjab, Pakistan. A total of 10 specimens were captured during the field surveys from June to September, 2018 from different sites of Punjab. Platyceps rhodorachis was identify on the basis of morphology and confirmed through COI gene sequences. The obtained DNA sequences have shown reliable and exact species identification. Newly produced DNA sequences of Platyceps rhodorachis were submitted to GenBank and accession numbers were obtained (MK936174.1, MK941839.1 and MT790210.1). N-J tree based on COI sequences of Platyceps rhodorachis clearly separated as out-group with other members of family Colubridae based on p-distance. The intra-specific genetic variation ranges from 12% to 18%. The DNA sequences of Platyceps rhodorachis kashmirensis, Platyceps rhodorachis ladacensis, Platyceps ventromaculatus, Platyceps ventromaculatus bengalensis and Platyceps ventromaculatus indusai are not available at NCBI to validate their taxonomic positions. In our recommendations, a large scale molecular based identification of Pakistan’s herpetofauna is required to report more new or subspecies from country.


Nematology ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 939-956 ◽  
Author(s):  
Abraham Okki Mwamula ◽  
Md. Faisal Kabir ◽  
Gayeong Lee ◽  
In Ho Choi ◽  
Young Ho Kim ◽  
...  

Summary Six species belonging to the Criconematina, including a morphologically cryptic population within the Mesocriconema curvatum-group, are characterised based on integrative taxonomy based on morphological and molecular phylogenetic inferences from analyses of the 28S-rRNA, ITS-rRNA and COI gene sequences. Mesocriconema sp. 1 is morphologically similar to M. nebraskense and M. curvatum, differing from M. curvatum by the occasional presence of 1-2 anastomoses and a relatively higher R value, and from M. nebraskense by only a narrowed first lip annulus. However, based on COI gene sequence analysis, significant differences among the three species are evident. The sequence information in the COI gene among Mesocriconema spp. continues to reveal the existence of cryptic species within well-established species designations, and the concept of Molecular Operational Taxonomic Units might be helpful in grouping the different lineages according to sequence identities. Mesocriconema nebraskense is detailed herein for the first time outside the USA. DNA sequences of Hemicycliophora labiata were similar to those in GenBank while the existence in Korea of M. curvatum, Hemicriconemoides brachyurus and Paratylenchus nanus is molecularly confirmed.


2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Ann Bucklin ◽  
Katja T. C. A. Peijnenburg ◽  
Ksenia N. Kosobokova ◽  
Todd D. O’Brien ◽  
Leocadio Blanco-Bercial ◽  
...  

AbstractCharacterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.


Sign in / Sign up

Export Citation Format

Share Document