Identification of a point mutation in the ace1 gene of Therioaphis trifolli maculata and detection of insecticide resistance by a diagnostic PCR–RFLP assay

2015 ◽  
Vol 105 (6) ◽  
pp. 712-716
Author(s):  
E. AlSuhaibani ◽  
C.C. Voudouris ◽  
R. Al-Atiyat ◽  
A. Kotzamumin ◽  
J. Vontas ◽  
...  

AbstractAphids are important agricultural pests worldwide. Their control is largely based on chemical insecticides. One species that shows important invasive abilities and host-plant-related differences is Therioaphis trifolii (Monell) (Hemiptera: Aphididae). T. trifolii maculata, also known as spotted alfalfa aphid (SAA), can be very injurious to alfalfa crops in certain regions, such as in Saudi Arabia for effective control it is essential to diagnose and monitor the resistance mechanisms in the SAA populations. In the present study, we analysed acetylcholinesterase (ace) target site insensitivity mechanisms. A 650 bp length DNA containing the putative acetylcholinesterase (ace1) precursor was obtained and compared with other Hemipteran species. The sequences of many individual aphids collected from alfalfa crops in Saudi Arabia were analysed for the presence of resistance mutations: no resistance mutations were found at the resistance mutation loci 302; however, the presence of a serine–phenylalanine substitution (S431F) was identified in one individual. The S431F substitution, has been shown to confer significant levels of both organophosphate and carbamate resistance in other aphid species, and is now found for the first time in T. trifolii. We subsequently developed a simple polymerase chain reaction–restriction fragment length polymorphism assays for the S431F mutation, using a TaqI restriction site destroyed by the S431F mutation. The novel diagnostic assay may support the implementation of Insecticide Resistance Management strategies, for the control of SAA in alfalfa crops in the Kingdom of Saudi Arabia, and other countries worldwide.

2007 ◽  
Vol 97 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. Khaliq ◽  
M.N.R. Attique ◽  
A.H. Sayyed

AbstractThe susceptibility of representative pyrethroid (cypermethrin, deltamethrin, lambdacyhalothrin, bifenthrin), organophosphate (chlorpyriphos, triazophos, profenophos) and new chemistry insecticides (spinosad, indoxacarb and emamectin) was investigated for 18 field populations ofPlutella xylostella(Linnaeus) from three different zones in Pakistan. The LC50(mg ml−1; 48 h) values of pyrethroids for various populations ranged from 0.19–1.88 for cypermethrin, 0.31–2.64 for deltamethrin, 0.08–1.16 for lambdacyhalothrin and 0.07–0.88 for bifenthrin. The LC50(mg ml−1; 48 h) of organophosphates ranged from 0.52–5.67 for chlorpyriphos, 0.37–4.14 for triazophos and 0.03–2.65 for profenophos. The most probable reason for low toxicity of organophosphates and pyrethroids is the evolution of multiple resistance mechanisms; however, further studies are required to establish these mechanisms. When these same products were tested against a susceptible laboratory population (Lab-Pak), the new chemistry compounds were significantly more toxic than pyrethroids and organophosphates. The results are discussed in relation to integrated pest management and insecticide resistance management strategies forP. xylostella.


1998 ◽  
Vol 353 (1376) ◽  
pp. 1757-1767 ◽  
Author(s):  
I. Denholm ◽  
M. Cahill ◽  
T. J. Dennehy ◽  
A. R. Horowitz

For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high–value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance–management strategies implemented on cotton in Israel, and subsequently in south–western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest–management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.


2016 ◽  
Vol 113 (51) ◽  
pp. 14692-14697 ◽  
Author(s):  
Vassilis Douris ◽  
Denise Steinbach ◽  
Rafaela Panteleri ◽  
Ioannis Livadaras ◽  
John Anthony Pickett ◽  
...  

Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistantPlutella xylostellaat the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) inDrosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding flyCHS1gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.


Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


2020 ◽  
Vol 37 (10) ◽  
pp. 2900-2917 ◽  
Author(s):  
Xavier Grau-Bové ◽  
Sean Tomlinson ◽  
Andrias O O’Reilly ◽  
Nicholas J Harding ◽  
Alistair Miles ◽  
...  

Abstract The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across nonconcordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.


2020 ◽  
Vol 25 (1) ◽  
pp. 155-168
Author(s):  
Yasin Nazım Alpkent ◽  
Emre İnak ◽  
Selçuk Ulusoy ◽  
Recep Ay

Turkey has great potential in vegetable production especially in greenhouses. However, plant pests such as Tetranychus urticae Koch can cause significant yield losses with the contribution of suitable climate conditions of greenhouses that allow to fast development of spider mites. Although synthetic acaricides are the most preferred control tools to manage T. urticae populations in Turkey, control failure has often been reported because of its ability to quickly develop resistance. In this study, bifenthrin and hexythiazox toxicity over five field-collected strains were evaluated and mechanisms of resistance have also been investigated via biochemical and molecular methods. Resistance mutations in voltage gated sodium channel and chitin synthase I which are the target sites of bifenthrin and hexythiazox, respectively, were found in various strains. The specific activity of P450 and GST enzymes was significantly increased in all field-collected strains comparing with susceptible strain. In addition, synergists of P450 and esterase enzymes enhanced the bifenthrin and hexythiazox toxicity, respectively. The results of this study will contribute to design proper resistance management strategies in Turkish greenhouses. 


2003 ◽  
Vol 93 (4) ◽  
pp. 289-297 ◽  
Author(s):  
T. Guillemaud ◽  
A. Brun ◽  
N. Anthony ◽  
M.H. Sauge ◽  
R. Boll ◽  
...  

AbstractIntensive chemical treatments have led to the development of a number of insecticide resistance mechanisms in the peach–potato aphid Myzus persicae (Sulzer). Some of these mechanisms are known to be associated with negative pleiotropic effects (resistance costs). Molecular and biochemical methods were used to determine the genotypes or phenotypes associated with four insecticide resistance mechanisms in single aphids from sexually-reproducing populations in southern France. The mechanisms considered were E4 and FE4 carboxylesterase overproduction, modified acetycholinesterase, and kdr and rdl resistance-associated mutations. A new method for determining individual kdr genotypes is presented. Almost all resistant individuals overproduced FE4 carboxylesterase, whereas modified acetylcholinesterase was rare. Both the kdr and rdl resistance mutations were present at high frequencies in French sexually-reproducing populations. The frequencies of insecticide resistance genes were compared before and after sexual reproduction in one peach orchard at Avignon to evaluate the potential impact of selection on the persistence of resistance alleles in the over-wintering phase. The frequencies of the kdr and rdl mutations varied significantly between autumn and spring sampling periods. The frequency of the kdr mutation increased, probably due to pyrethroid treatments at the end of the winter. Conversely, the frequency of the rdl mutation decreased significantly during winter, probably because of a fitness cost associated with this mutation.


1993 ◽  
Vol 1 ◽  
pp. 28-35 ◽  
Author(s):  
Neil W. Forrester ◽  
Matthew Cahill ◽  
Lisa J. Bird ◽  
Jacquelyn K. Layland

SummaryResistance to endosulfan and pyrethroids in Helicoverpa armigera in Australia was shown to be due to multiple rather than cross resistance. The independence of the endosulfan and pyrethroid resistance mechanisms vindicates the sequential use of these two groups in Stages I and II of the insecticide resistance management strategy, respectively. Within the cyclodienes, greatest resistance occurred to dieldrin with lower order cross resistance to endosulfan and endrin. Male and female moths expressed cyclodiene resistance equally.


Sign in / Sign up

Export Citation Format

Share Document