INFLUENCE OF SOWING DATE ON THE GROWTH AND YIELD OF BAMBARA GROUNDNUT LANDRACES IN TANZANIA

2000 ◽  
Vol 36 (1) ◽  
pp. 1-13 ◽  
Author(s):  
S. T. COLLINSON ◽  
K. P. SIBUGA ◽  
A. J. P. TARIMO ◽  
S. N. AZAM-ALI

Sequential sowings were carried out at Dodoma, Tanzania, to examine the effect of changing climatic parameters on the growth and yield of bambara groundnut (Vigna subterranea). Sowings took place on 4 January, 4 February and 4 March 1994; 4 and 24 January, and 13 February 1995; 4 and 21 January, and 7 February 1996. Rainfall during the crop life cycle varied from 163 to 611 mm, mean photoperiod from 11.82 to 12.09 h d−1 and mean temperature from 22.6 to 24.4 °C. In 1994, the highest pod yields were achieved at the earliest sowing date, with a maximum of 2.87 and 1.42 t ha−1 for the red- and cream-seeded landraces, representing pod harvest indices of 0.56 and 0.34 respectively. A 30-d delay in sowing caused >60% reduction in pod yield, and a further 30-d delay resulted in no pods at all. Similarly, in 1995 successive delays in sowing caused dramatic yield declines, and the maximum yield was much lower, at 0.44 t ha−1. In 1996 there was no significant difference in pod yields between the two early sowing dates for the red-seeded landrace and yields were again lower than in 1994 with a maximum of 1.02 t ha−1. Differences in dry matter production between sowings and years were attributed mainly to differences in the amount and distribution of rainfall and to declining temperatures towards the end of the season; however, partitioning to pods was remarkably consistent across sowings.

1985 ◽  
Vol 104 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S. N. Silim ◽  
P. D. Hebblethwaite ◽  
M. C. Heath

SummaryExperiments were conducted between 1978 and 1981 to investigate the effect of autumn and spring sowing on emergence, winter survival, growth and yield of combining peas (varieties ‘Frimas’, ‘Filby’ and ‘Vedette’). Effects of growth regulator PP 333 (Paclobutrazol, ICI pic) application and defoliation on winter survival of Filby were also investigated. Field emergence of autumn-sown Frimas (winter hardy) was less than Vedette or Filby but percentage winter survival was greater. PP 333 application, but not defoliation, increased percentage winter survival of Filby sown in September. Total dry-matter production and photosynthetic area of autumn- compared with spring-sown crops varied considerably between seasons. Yield data indicated that autumn-sown crops produce similar seed yields to spring sowings when winter survival is adequate. November sowings matured 2–4 weeks before March-sown crops, depending on variety and season. Optimum sowing dates were mid-November and early March. Large seed-yield reductions occurred when sowing was delayed until mid-April.


1999 ◽  
Vol 133 (2) ◽  
pp. 159-166 ◽  
Author(s):  
M. BRINK

A semi-controlled environment study was conducted from May to September 1996 in Wageningen, The Netherlands, to investigate the interaction between growth and development in bambara groundnut (Vigna subterranea) and the influence of photoperiod on dry matter partitioning. The experimental design was a split-plot with four photoperiods (10·5, 11·8, 13·2 and 14·5 h/d) and two light treatments: unshaded and shaded (42% light reduction). The selection used was ‘DipC94’ from Botswana. The dates of 50% flowering and 50% podding were determined, and samples of plants were harvested at 22, 36, 50, 64, 78, 92, 106 and 120 days after sowing. Total dry matter production was 41% lower in the shaded treatment than in the unshaded treatment, but the rates of progress from sowing to flowering and flowering to podding decreased by only 3 and 12% respectively. This suggests that growth and development in bambara groundnut are largely independent. Photoperiod influenced dry matter partitioning indirectly, through its influence on the onset of podding. There were, however, no strong direct photoperiod effects on dry matter partitioning, either before or after the onset of podding.


2021 ◽  
Vol 24 (1) ◽  
pp. 57-70
Author(s):  
S Akhtar ◽  
MJ Ullah ◽  
A Hamid ◽  
MS Islam ◽  
MKU Ahamed ◽  
...  

The experiment was conducted at the Sher-e-Bangla Agricultural University (90o22 E, 23o 41 N), Dhaka, Bangladesh in  Rabi (winter) season of 2017-2018 to study the effects of sowing date on  growth and  yield of four white maize genotypes, viz.  PSC-121, Yangnuo-7, Yungnuo-30 and Changnuo-6. Sowing dates were November 26, December 11, and December 26. Data were collected on different phenological growth stages, dry matter, physiological attributes, yield, and yield attributes. A delay in sowing date delayed the time required for seedling emergence, to reach the 6-leaf collar, maturity stage, and also reduced yield. The planting of PSC-121 in November 26 gave the highest dry matter plant-1, the number of grains cob-1, and 100- grain weight that resulted in the highest grain yield (11.65 t/ha) of the genotype. Bangladesh Agron. J. 2021, 24(1): 57-70


1996 ◽  
Vol 126 (3) ◽  
pp. 307-318 ◽  
Author(s):  
S. T. Collinson ◽  
S. N. Azam-Ali ◽  
K. M. Chavula ◽  
D. A. Hodson

SUMMARYStands of bambara groundnut (Vigna subterranea (L.) Verde.) were grown in five controlledenvironment glasshouses at the Tropical Crops Research Unit, University of Nottingham, Sutton Bonington Campus, in 1990. Five soil moisture regimes were imposed (one per house), from fully irrigated each week (treatment A), to no irrigation after crop establishment at 35 days after sowing (DAS) (treatment E). Decreasing the amount of water applied resulted in a decline in total dry matter production and harvest index, and a reduction in pod yield from 412 (treatment B) to 0·041 ha-1 (treatment E) at 125 DAS. A maximum leaf area index of 5–4 was achieved by treatments B and C at 90 DAS, resulting in a fractional interception of c. 0·8 of incoming radiation. Total accumulated radiation interception values were 749, 693, 688, 618 and 554 MJ m-2 for treatments A, B, C, D and E, respectively. The efficiency of conversion of the radiation intercepted into dry matter was reduced from 1·41 to 0·50 g MJ-1 by drought.


2018 ◽  
Vol 5 (2) ◽  
pp. 117-122
Author(s):  
Mebrate Tamrat Woldeselassie ◽  
Daniel Admasu

Field experiments were carried out to study the response of two lentil varieties to varying sowing dates in a split plot design with three replications, in which varieties were assigned to main plots and sowing dates to sub plots. The study was conducted at Enewari research site of Debre Birhan agricultural research center for three consecutive years (2007 - 2009) on two soil types. The results showed that no significant difference between varieties for grain yield. However, variety Alemaya produced highest grain yields of 1.3 t/ha and 1.22 t/ha from fifth (30-July) sowing date on heavy and relatively light Vertisols respectively. On the other hand, the local variety produced highest grain yields of 1.4 t/ha and 1.06 t/ha on the fifth and six sowing dates on heavy and relatively light Vertisols respectively. Grain yield proportionally increased with increasing biological yield in different sowing dates on both soil types. On heavy Vertisol varieties responded differently to the changes of sowing dates. Variety Alemaya had responded to a wider sowing dates. Early August to mid-August sowing found to be optimum for local variety. On light Vertisol, the functional relationship was unexplained for both varieties. In general, heavy Vertisol gave higher responses than relatively light vertisol throughout most parameters and levels tested.  


1987 ◽  
Vol 108 (2) ◽  
pp. 389-394 ◽  
Author(s):  
B. Chung

SummaryThe effects of four irrigation treatments on the growth and yield of poppies were studied in two ‘drought’ seasons in Tasmania. Irrigation increased total dry-matter production, leaf area index and delayed leaf senescence in both seasons. Irrigation, which continued until leaf senescence, increased total morphine yield by 5–20 kg/ha compared with no irrigation. This yield increase was attributed to the increase in the number and yield of lateral heads, the yield of terminal heads and capsule morphine concentration.As the effects of irrigation on head yield reflect the effects on total dry-matter production, irrigation guidelines for poppies were developed from an analysis of plant growth during theseason. For maximum yield, one irrigation of 50 mm should be applied at the 50% hook stage, at 50% flowering, at the end of flowering and 2 weeks after the end of flowering. Growers who currently cease irrigation at 50% flowering can expect yield increases of 4–13 kg/ha ifthey apply two further irrigations thereafter.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


2017 ◽  
Vol 14 (2) ◽  
pp. 77-85
Author(s):  
Md Sohel Mahmud ◽  
Md Jafar Ullah ◽  
Md Abdullahil Baque ◽  
Lutfun Naher ◽  
Sayed Mohammad Mohsin

The experiment was conducted to determine the effect of irrigations and sowing dates on growth and yield performance of wheat in the experimental field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during the period of November 18, 2012 to March 30, 2013. The experiment was comprised of two factors, viz. factor A: two irrigations namely irrigation (I) and no irrigation i.e. control (I0), and factor B: three sowing dates such as S1: 1st sowing on 18 November, S2: 2nd sowing on 03 December and S3: 3rd sowing on 18 December. The experiment was laid out in a split plot design with three replications. Irrigation was assigned in the main plot, while sowing time was in the sub-plots. Data on grain yield and different yield contributing characters were taken after harvest. Results indicated that the highest grain yield was obtained with I (2.915 t ha-1) and S1 (2.983 t ha-1). The interaction of irrigation (I) and sowing on 18 November (S1) showed the maximum yield (3.387t ha-1), spike length (17.08 cm), 1000 grain weight (43.4 g), spikelets spike-1 (20.03) and grain spike-1 (65.58) of wheat.The Agriculturists 2016; 14(2) 77-85


2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


Author(s):  
A.V. Cherkashyna ◽  
◽  
E.F. Sotchenko ◽  

Dry matter yield is an objective indicator of assessing the productivity of corn hybrids grown for silage and green fodder. The aim of the work was to identify optimal planting dates to obtain maximum yield of dry matter at the late milk stage of development for hybrids of corn depending on groups of maturity under rain-fed conditions of the Crimean steppe zone. The sowing dates of the field experiment were on April 5th, 15th, and 25th. We studied hybrids of corn of different groups of maturity. Soil – chernozems southern low-humus. Meteorological conditions in 2016 were characterized by increased moisture availability (Selyaninov Hydrothermal Coefficient (HTC) 1.46). In 2017, severe drought was noted (HTC 0.34). Moisture availability was insufficient in 2018 and 2019 (HTC 0.79 and 0.78, respectively). In 2016-2019, the best planting date for hybrid ‘Nur’ was April 15th; the dry matter yield in the late milk stage was 6.69 t/ha. For the medium- early hybrid ‘Mashuk 220 MV’, the best sowing dates were April 15th and 25th; dry matter yield was 5.95 and 5.78 t/ha, respectively. Hybrid ‘Mashuk 355 MV’ demonstrated higher dry matter yield on April 5th and 15th (7.12 and 6.99 t/ha). However, the planting date of April 25th led to significant yield decreased (to 6.1 t/ha).


Sign in / Sign up

Export Citation Format

Share Document