THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF AVOCADO (Persea americana Mill.): A REVIEW

2013 ◽  
Vol 49 (2) ◽  
pp. 256-278 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation need of avocado are collated and reviewed in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information is given on the centre of origin (Mexico and Central America) and the three distinct ecological areas where avocados are grown commercially: (1) Cool, semi-arid climates with winter-dominant rainfall (e.g. Southern California, Chile, Israel); (2) Humid, subtropical climates with summer-dominant rainfall (e.g. eastern Australia, Mexico, South Africa); and (3) Tropical or semi-tropical climates also with summer-dominant rainfall (e.g. Brazil, Florida and Indonesia). Most of the research reported has been done in Australia, California, Israel and South Africa. There are three ecological races that are given varietal status within the species: Persea americana var. drymifolia (Mexican race), P. americana var. guatemalensis (Guatemalan race) and P. americana var. americana (Antillean, West Indian or Lowland race). Interracial crossing has taken place. This paper summarises the effects of water deficits on the development processes of the crop and then reviews plant–water relations, crop water requirements, water productivity and irrigation systems. Shoot growth in mature trees is synchronised into flushes. Flower initiation occurs in the autumn, with flowering in late winter and spring. Flowers form on the ends of the branches. A large heavily flowering tree may have over a million flowers, but only produce 200–300 fruits. Fruit load adjustment occurs by shedding during the first three to four weeks after fruit set and again in early summer. Water deficits during critical stages of fruit ontogeny have been linked to fruit disorders such as ring-neck. Reproductive growth is very resistant to water stress (compared with vegetative growth). Avocado is conventionally considered to be shallow rooted, although roots extend to depths greater than 1.5 m. The majority of feeder roots are found in the top 0.60 m of soil and root extension can continue throughout the year. Leaves develop a waxy cuticle on both surfaces, which is interrupted by stomata on the abaxial surface (350–510 mm−2), many of which are blocked by wax. Stomata are also present on the sepals and petals at low densities (and on young fruit). During flowering, the canopy surface area available for water loss is considerably increased. Stomatal closure is an early indicator of water stress, which together with associated changes in leaf anatomy, restricts CO2 diffusion. There have only been a few attempts to measure the actual water use of avocado trees. In Mediterranean-type climates, peak rates of water use (in summer) appear to be between 3 and 5 mm d−1. For mature trees, the crop coefficient (Kc) is usually within the range 0.4–0.6. The best estimate of water productivity is between 1 and 2 kg fruit m−3. Soil flooding and the resultant reduction in oxygen level can damage roots even in the absence of root rot. Avocado is particularly sensitive to salinity, notably that caused by chloride ions. Rootstocks vary in their sensitivity. Both drip and under-tree microsprinklers have been/are successfully used to irrigate avocado trees. Mulching of young trees is a recommended water conservation measure and has other benefits. A large proportion of the research reviewed has been published in the ‘grey’ literature as conference papers and annual reports. Sometimes, this is at the expense of reporting the science on which the recommendations are based in peer-reviewed papers. The pressures on irrigators to improve water productivity are considered.

2011 ◽  
Vol 47 (1) ◽  
pp. 27-51 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation needs of coconut are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information on the centres of origin and production of coconut and on crop development processes is followed by reviews of plant water relations, crop water use and water productivity, including drought mitigation. The majority of the recent research published in the international literature has been conducted in Brazil, Kerala (South India) and Sri Lanka, and by CIRAD (France) in association with local research organizations in a number of countries, including the Ivory Coast. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (44 months) mean that causal links between environmental factors (especially water) are difficult to establish. The stomata play an important role in controlling water loss, whilst the leaf water potential is a sensitive indicator of plant water status. Both stomatal conductance and leaf water potential are negatively correlated with the saturation deficit of the air. Although roots extend to depths >2 m and laterally >3 m, the density of roots is greatest in the top 0–1.0 m soil, and laterally within 1.0–1.5 m of the trunk. In general, dwarf cultivars are more susceptible to drought than tall ones. Methods of screening for drought tolerance based on physiological traits have been proposed. The best estimates of the actual water use (ETc) of mature palms indicate representative rates of about 3 mm d−1. Reported values for the crop coefficient (Kc) are variable but suggest that 0.7 is a reasonable estimate. Although the sensitivity of coconut to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation although annual yield increases (50%) of 20–40 nuts palm−1 (4–12 kg copra, cultivar dependent) have been reported. These are only realized in the third and subsequent years after the introduction of irrigation applied at a rate equivalent to about 2 mm d−1 (or 100 l palm−1 d−1) at intervals of up to one week. Irrigation increases female flower production and reduces premature nut fall. Basin irrigation, micro-sprinklers and drip irrigation are all suitable methods of applying water. Recommended methods of drought mitigation include the burial of husks in trenches adjacent to the plant, mulching and the application of common salt (chloride ions). An international approach to addressing the need for more information on water productivity is recommended.


2011 ◽  
Vol 47 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. K. V. CARR ◽  
J. W. KNOX

SUMMARYThe results of research on the water relations and irrigation needs of sugar cane are collated and summarized in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of production of sugar cane is followed by reviews of (1) crop development, including roots; (2) plant water relations; (3) crop water requirements; (4) water productivity; (5) irrigation systems and (6) irrigation scheduling. The majority of the recent research published in the international literature has been conducted in Australia and southern Africa. Leaf/stem extension is a more sensitive indicator of the onset of water stress than stomatal conductance or photosynthesis. Possible mechanisms by which cultivars differ in their responses to drought have been described. Roots extend in depth at rates of 5–18 mm d−1 reaching maximum depths of > 4 m in ca. 300 d providing there are no physical restrictions. The Penman-Monteith equation and the USWB Class A pan both give good estimates of reference crop evapotranspiration (ETo). The corresponding values for the crop coefficient (Kc) are 0.4 (initial stage), 1.25 (peak season) and 0.75 (drying off phase). On an annual basis, the total water-use (ETc) is in the range 1100–1800 mm, with peak daily rates of 6–15 mm d−1. There is a linear relationship between cane/sucrose yields and actual evapotranspiration (ETc) over the season, with slopes of about 100 (cane) and 13 (sugar) kg (ha mm)−1 (but variable). Water stress during tillering need not result in a loss in yield because of compensatory growth on re-watering. Water can be withheld prior to harvest for periods of time up to the equivalent of twice the depth of available water in the root zone. As alternatives to traditional furrow irrigation, drag-line sprinklers and centre pivots have several advantages, such as allowing the application of small quantities of water at frequent intervals. Drip irrigation should only be contemplated when there are well-organized management systems in place. Methods for scheduling irrigation are summarized and the reasons for their limited uptake considered. In conclusion, the ‘drivers for change’, including the need for improved environmental protection, influencing technology choice if irrigated sugar cane production is to be sustainable are summarized.


2011 ◽  
Vol 47 (4) ◽  
pp. 629-652 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation need of oil palm are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (West Africa) and of production of oil palm (Malaysia and Indonesia), but the crop is now moving into drier regions. The effects of water stress on the development processes of the crop are summarized followed by reviews of its water relations, water use and water productivity. The majority of the recent research published in the international literature has been conducted in Malaysia and in Francophone West Africa. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (ca. three years) means that causal links between environmental factors (especially water) and yield are difficult to establish. The majority of roots are found in the 0–0.6 m soil horizons, but roots can reach depths greater than 5 m and spread laterally up to 25 m from the trunk. The stomata are a sensitive indicator of plant water status and play an important role in controlling water loss. Stomatal conductance and photosynthesis are negatively correlated with the saturation deficit of the air. It is not easy to measure the actual water use of oil palm, the best estimates for mature palms suggesting crop evapotranspiration (ETc) rates of 4–5 mm d−1 in the monsoon months (equivalent to 280–350 l palm−1 d−1). For well-watered mature palms, crop coefficient (Kc) values are in the range 0.8–1.0. Although the susceptibility of oil palm to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation. The best estimates are 20–25 kg fresh fruit bunches ha−1 mm−1 (or a yield loss of about 10% for every 100 mm increase in the soil water deficit). These increases are only realized in the third and subsequent years after the introduction of irrigation and follow an increase in the number of fruit bunches as a result of an improvement in the sex ratio (female/total inflorescence production) and a reduction in the abortion of immature inflorescences. There is no agreement on the allowable depletion of the available soil water, or on the associated optimum irrigation interval. Drip irrigation has been used successfully on oil palm.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1284-1291 ◽  
Author(s):  
Chiara Cirillo ◽  
Youssef Rouphael ◽  
Rosanna Caputo ◽  
Giampaolo Raimondi ◽  
Stefania De Pascale

Bougainvillea is widely used as flowering shrub in gardening and landscaping in the Mediterranean region characterized by limited water supply. The evaluation of deficit irrigation as a possible technique to improve water productivity and selection of genotypes that can better withstand soil water deficits are essential for sustainable production. A greenhouse experiment was conducted to determine the effects of deficit irrigation on three potted Bougainvillea genotypes [B. glabra var. Sanderiana, B. ×buttiana ‘Rosenka’, B. ‘Lindleyana’ (=B. ‘Aurantiaca’)] grown in two shapes, globe and pyramid, on agronomical and physiological parameters. Irrigation treatments were based on the daily water use (100%, 50%, or 25%). The shoot, total dry biomass, leaf number, leaf area, and macronutrient [nitrogen (N), phosphorus (P), and potassium (K)] concentration decreased in response to an increase in water stress with the lowest values recorded in the severe deficit irrigation (SDI) treatment. At 160 days after transplanting (DAT), the percentage of total dry biomass reduction caused by irrigation level was lower in B. ×buttiana ‘Rosenka’ compared with B. glabra var. Sanderiana and B. ‘Lindleyana’ (=B. ‘Aurantiaca’). At 160 DAT, the flower index increased in response to an increase in water stress with the highest values recorded under both moderate deficit irrigation (MDI) and SDI for B. ×buttiana ‘Rosenka’. The biomass water use efficiency (WUE) increased under water stress conditions with the highest values recorded in B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ grown under MDI (average 1.43 and 1.25 g·L−1, respectively) and especially with SDI (average 1.68 and 1.36 g·L−1, respectively). A number of tolerance mechanisms such as increase in stomatal resistance, decrease in leaf water potential, and decrease in leaf osmotic potential have been observed, especially under SDI. The MDI treatment can be used successfully in Bougainvillea to reduce water consumption while improving the overall quality and WUE, whereas the genotypes B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ could be considered suitable for pot plant production.


2020 ◽  
Author(s):  
Matti Räsänen ◽  
Mika Aurela ◽  
Ville Vakkari ◽  
Johan P. Beukes ◽  
Juha-Pekka Tuovinen ◽  
...  

Abstract. The role of precipitation (P) variability on evapotranspiration (ET) and its two components transpiration (T) and evaporation (E) rates from savannas continues to draw significant research interest given its relevance to a number of eco-hydrological applications. The work here reports on six years of measured ET and energy flux components, and estimated T from a grazed savanna grassland collected at a research site situated in Welgegund, South Africa. During this period, annual P varied considerably in amount (421 mm to 614 mm), rainy season length and precipitation intensity. T was estimated using annual water use efficiency and gross primary production determined from eddy-covariance measurements of net ecosystem CO2 exchange rates. The computed annual T was highly constrained to 352 ± 8 mm (T/ET = 0.55) for four wet years when rainfall was near or above the long-term mean. This is explained by the near constant annual tree transpiration and moderate water stress of C4 grasses during these years. In a drought year with intermittent rainfall, the annual ecosystem T was reduced due to grass dieback-regrowth that alters the temporal dynamics of bare soil cover and infiltration, and complicates monthly T/ET relation to leaf-area index (LAI). However, annual ET remains approximately equal to annual precipitation (P) even during the drought year due to increased soil evaporation. Indeed, at annual scales, ET ≈ P and annual T is conservative despite variation in amount and timing in rainfall, due to constant water use of mature trees, and the ability of C4 grasses to maintain transpiration at moderate water stress and effectively use pulsed rainfall.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 730-736 ◽  
Author(s):  
Youssef Rouphael ◽  
Mariateresa Cardarelli ◽  
Giuseppe Colla ◽  
Elvira Rea

Limited water supply in the Mediterranean region is a major problem in irrigated agriculture. Grafting may enhance drought resistance, plant water use efficiency, and plant growth. An experiment was conducted in two consecutive growing seasons to determine yield, plant growth, fruit quality, leaf gas exchange, water relations, macroelements content in fruits and leaves, and water use efficiency of mini-watermelon plants [Citrullus lanatus (Thunb.) Matsum. and Nakai cv. Ingrid], either ungrafted or grafted onto the commercial rootstock ‘PS 1313’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne), under open field conditions. Irrigation treatments were 1.0, 0.75, and 0.5 evapotranspiration rates. In both years (2006 and 2007), marketable yield decreased linearly in response to an increase in water stress. When averaged over year and irrigation rate, the total and marketable yields were higher by 115% and 61% in grafted than in ungrafted plants, respectively. The fruit quality parameters of grafted mini-watermelons such as fruit dry matter and total soluble solids content were similar in comparison with those of ungrafted plants, whereas titratable acidity, K, and Mg concentrations improved significantly. In both grafting combinations, yield water use efficiency (WUEy) increased under water stress conditions with higher WUE values recorded in grafted than ungrafted plants. The concentration of N, K, and Mg in leaves was higher by 7.4%, 25.6%, and 38.8%, respectively, in grafted than in ungrafted plants. The net assimilation of CO2, stomatal conductance, relative water content, leaf, and osmotic potential decreased under water stress conditions. The sensitivity to water stress was similar between grafted and ungrafted plants, and the higher marketable yield from grafted plants was mainly the result of an improvement in nutritional status and higher CO2 assimilation and water uptake from the soil.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


2007 ◽  
Vol 47 (1) ◽  
pp. 71 ◽  
Author(s):  
R. J. Hutton ◽  
J. J. Landsberg ◽  
B. G. Sutton

This paper addresses the question of whether a citrus crop has the same need for water at all stages of development or whether it is possible to withhold water at times when the crop is less sensitive to water stress, thus, reducing total water use and improving water use efficiency while still maintaining yield. To answer this question water applied by irrigation was reduced by up to 33% relative to standard full irrigation by extending the intervals between applications from 3 to 17 days during fruit growth stages II and III in the annual growth cycle. As expected, the longer intervals resulted in greater depletion in soil moisture and significant water stress developed as soil water deficits approached the lower limits of plant available water. Stressed trees exhibited mean pre-dawn water potential (ψl) values of –0.93 MPa and midday ψl values decreased to between –2.0 and –2.5 MPa. Periodic soil water deficits in late summer and autumn reduced shoot growth, but fruit yield was unaffected, and there was no evidence of reduced canopy size. Water use efficiency (mass of fruit produced per unit water applied) improved, but fruit growth was extremely sensitive to moisture stress and extended irrigation intervals in summer and autumn reduced fruit size. Fruit juice quality was also affected, as there was an increase in both total soluble solids and juice acidity, but the practical consequences of these were limited because there were only small changes to the sugar : acid ratios. This work has demonstrated that deficient irrigation during summer can be used to manipulate growth and reduce water use, but at the risk of a marginal reduction in fruit size.


2006 ◽  
Vol 46 (10) ◽  
pp. 1363 ◽  
Author(s):  
H. G. Beecher ◽  
B. W. Dunn ◽  
J. A. Thompson ◽  
E. Humphreys ◽  
S. K. Mathews ◽  
...  

To remain economically and environmentally sustainable, Australian rice growers need to be able to readily respond to market opportunities and increase cropping system productivity and water productivity. Water availability is decreasing whereas its price is increasing. Alternative irrigation layouts and water management approaches could contribute to reduced water use and increased irrigation efficiency. This paper reports results for the first crop (rice) in a cropping system experiment to compare permanent raised bed and conventional layouts on a transitional red-brown earth at Coleambally, New South Wales. The performance of conventional ponded rice grown on a flat layout was compared with rice grown on 1.84-m wide, raised beds with furrow and subsurface drip irrigation. In addition, deep and shallow ponded water depth treatments (15 and 5 cm water depth over the beds) were imposed on the rice on beds during the reproductive period. A range of nitrogen (N) fertiliser rates (0–180 kg N/ha) was applied to all treatments. The traditional flat flooded treatment (Flat) achieved the highest grain yield of 12.7 t/ha, followed by the deep (Bed 15) and shallow (Bed 5) ponded beds (10.2 and 10.1 t/ha, respectively). The furrow (Furrow) irrigated bed treatment yielded 9.4 t/ha and the furrow/drip (Furr/Drip) treatment yielded the lowest grain yield (8.3 t/ha). Grain yield from all bed treatments was reduced owing to the wide furrows (0.8 m between edge rows on adjacent beds), which were not planted to rice. Rice crop water use was significantly different between the layout–irrigation treatments. The Flat, Bed 5 and Bed 15 treatments had similar input (irrigation + rainfall – surface drainage) water use (mean of 18.3 ML/ha). The water use for the Furrow treatment was 17.2 ML/ha and for the Furr/Drip treatment, 15.1 ML/ha. Input WP of the Flat treatment (0.68 t/ML) was higher than the raised bed treatments, which were all similar (mean 0.55 t/ML). This single season experiment shows that high yielding rice crops can be successfully grown on raised beds, but when beds are ponded after panicle initiation, there is no water saving compared with rice grown on a conventional flat layout. Preliminary recommendations for the growing of rice on raised beds are that the crop be grown as a flooded crop in a bankless channel layout. This assists with weed control and allows flooding for cold temperature protection, which is necessary with current varieties. Until we find effective herbicides and other methods of weed control and N application that do not require ponding, there is little scope for saving water while maintaining yield on suitable rice soil through the use of beds.


Sign in / Sign up

Export Citation Format

Share Document