Effect of raised beds, irrigation and nitrogen management on growth, water use and yield of rice in south-eastern Australia

2006 ◽  
Vol 46 (10) ◽  
pp. 1363 ◽  
Author(s):  
H. G. Beecher ◽  
B. W. Dunn ◽  
J. A. Thompson ◽  
E. Humphreys ◽  
S. K. Mathews ◽  
...  

To remain economically and environmentally sustainable, Australian rice growers need to be able to readily respond to market opportunities and increase cropping system productivity and water productivity. Water availability is decreasing whereas its price is increasing. Alternative irrigation layouts and water management approaches could contribute to reduced water use and increased irrigation efficiency. This paper reports results for the first crop (rice) in a cropping system experiment to compare permanent raised bed and conventional layouts on a transitional red-brown earth at Coleambally, New South Wales. The performance of conventional ponded rice grown on a flat layout was compared with rice grown on 1.84-m wide, raised beds with furrow and subsurface drip irrigation. In addition, deep and shallow ponded water depth treatments (15 and 5 cm water depth over the beds) were imposed on the rice on beds during the reproductive period. A range of nitrogen (N) fertiliser rates (0–180 kg N/ha) was applied to all treatments. The traditional flat flooded treatment (Flat) achieved the highest grain yield of 12.7 t/ha, followed by the deep (Bed 15) and shallow (Bed 5) ponded beds (10.2 and 10.1 t/ha, respectively). The furrow (Furrow) irrigated bed treatment yielded 9.4 t/ha and the furrow/drip (Furr/Drip) treatment yielded the lowest grain yield (8.3 t/ha). Grain yield from all bed treatments was reduced owing to the wide furrows (0.8 m between edge rows on adjacent beds), which were not planted to rice. Rice crop water use was significantly different between the layout–irrigation treatments. The Flat, Bed 5 and Bed 15 treatments had similar input (irrigation + rainfall – surface drainage) water use (mean of 18.3 ML/ha). The water use for the Furrow treatment was 17.2 ML/ha and for the Furr/Drip treatment, 15.1 ML/ha. Input WP of the Flat treatment (0.68 t/ML) was higher than the raised bed treatments, which were all similar (mean 0.55 t/ML). This single season experiment shows that high yielding rice crops can be successfully grown on raised beds, but when beds are ponded after panicle initiation, there is no water saving compared with rice grown on a conventional flat layout. Preliminary recommendations for the growing of rice on raised beds are that the crop be grown as a flooded crop in a bankless channel layout. This assists with weed control and allows flooding for cold temperature protection, which is necessary with current varieties. Until we find effective herbicides and other methods of weed control and N application that do not require ponding, there is little scope for saving water while maintaining yield on suitable rice soil through the use of beds.

2017 ◽  
Vol 50 (4) ◽  
pp. 17-28 ◽  
Author(s):  
R. Zaman ◽  
A.R. Akanda ◽  
S.K. Biswas ◽  
M.R. Islam

Abstract The experiment was conducted during Rabi season of 2015-2016 and 2016-2017 at the Regional Agricultural Research station, BARI, Ishurdi, Pabna, Bangladesh, to determine the water requirements of wheat on raised bed and the effect of different deficit irrigation on yield, water use efficiency and applied water productivity under raised bed wheat. This study consisted of following irrigation treatments: T1 = Irrigations up to 100% field capacity (FC) at crown root initiation (CRI), botting and grain filling stages (flat bed), T2 = Irrigations up to 100% FC at CRI, botting and grain filling stages on raised bed, T3 = Irrigations up to 80% FC at CRI, botting and grain filling stages on raised bed and T4 = Irrigations up to 60% FC at CRI, botting and grain filling stages on raised bed and laid out in a randomize complete block design with three replications. The result showed that significant effect of irrigation treatments were observed on plant height, spike per m2 and grain yield. Highest grain yield (4.66 t/ha) was obtained from treatment, irrigations up to 100% FC at CRI, botting and grain filling stages on raised bed, followed by irrigation up to 100% FC at same stages on flat bed. At raised bed wheat cultivation saving 14.30% water with increasing 15.66% grain yield than flat bed. Besides, comparing deficit irrigation (20% and 40% of full irrigation) and full irrigation condition on raised bed seeding system water use could be reduced about 4.18% to 5.57%, while scarifying 18.20% to 32.33% grain yield, where reduced 14.17% to 27.54% water use efficiency. Maximum applied water productivity 1.81 kg m−3 was observed in raised bed full irrigation condition. The rate of daily evaporation started to increase as the temperature started to rise and humidity started to decrease during the crop growing period. The results will be helpful for taking policy decision regarding efficient irrigation and water management under prevailing water scarce situation.


1994 ◽  
Vol 34 (7) ◽  
pp. 959 ◽  
Author(s):  
MAE Lattimore

Legume-based pastures have long been an integral part of rice growing in the southern New South Wales irrigation areas and still offer potential to improve the productivity, profitability, and sustainability of the temperate rice-cropping system.This paper reviews both historical and current aspects of pastures in temperate rice rotations in southern New South Wales and highlights the importance of pastures in sustaining this cropping system as environmental pressures increase. Topics discussed include pasture species and rotations, their role in improving soil fertility and sustainability, the value of pastures in weed control, and their management for maximum profitability.


2009 ◽  
Vol 60 (9) ◽  
pp. 870 ◽  
Author(s):  
R. D. Armstrong ◽  
J. Fitzpatrick ◽  
M. A. Rab ◽  
M. Abuzar ◽  
P. D. Fisher ◽  
...  

A major barrier to the adoption of precision agriculture in dryland cropping systems is our current inability to reliably predict spatial patterns of grain yield for future crops for a specific paddock. An experiment was undertaken to develop a better understanding of how edaphic and climatic factors interact to influence the spatial variation in the growth, water use, and grain yield of different crops in a single paddock so as to improve predictions of the likely spatial pattern of grain yields in future crops. Changes in a range of crop and soil properties were monitored over 3 consecutive seasons (barley in 2005 and 2007 and lentils in 2006) in the southern section of a 167-ha paddock in the Mallee region of Victoria, which had been classified into 3 different yield (low, moderate, and high) and seasonal variability (stable and variable) zones using normalised difference vegetation index (NDVI) and historic yield maps. The different management zones reflected marked differences in a range of soil properties including both texture in the topsoil and potential chemical-physical constraints in the subsoil (SSCs) to root growth and water use. Dry matter production, grain yield, and quality differed significantly between the yield zones but the relative difference between zones was reduced when supplementary irrigation was applied to barley in 2005, suggesting that some other factor, e.g. nitrogen (N), may have become limiting in that year. There was a strong relationship between crop growth and the use of soil water and nitrate across the management zones, with most water use by the crop occurring in the pre-anthesis/flowering period, but the nature of this relationship appeared to vary with year and/or crop type. In 2006, lentil yield was strongly related to crop establishment, which varied with soil texture and differences in plant-available water. In 2007 the presence of soil water following a good break to the season permitted root growth into the subsoil where there was evidence that SSCs may have adversely affected crop growth. Because of potential residual effects of one crop on another, e.g. through differential N supply and use, we conclude that the utility of the NDVI methodology for developing zone management maps could be improved by using historical records and data for a range of crop types rather than pooling data from a range of seasons.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 296 ◽  
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Hongtao Xing ◽  
Adam J. Lowrie ◽  
...  

Nitrification and urease inhibitors have been used to reduce nitrous oxide (N2O) emissions and increase nitrogen use efficiency in many agricultural systems. However, their agronomic benefits, such as the improvement of grain yield, is uncertain. A two-year field experiment was conducted to (1) investigate whether the use of 3,4-dimethylpyrazole phosphate (DMPP) or N-(n-butyl) thiophosphoric triamide (NBPT) can reduce N2O emissions and increase grain yield and (2) explore the financial benefit of using DMPP or NBPT in a rain-fed cropping system in south-eastern Australia. The experiment was conducted at Wagga Wagga, New South Wales, Australia with wheat (Triticum aestivum L.) in 2012 and canola (Brassica napus L.) in 2013. Results showed that urea coated with DMPP reduced the cumulative N2O emission by 34% for a wheat crop in 2012 (P < 0.05) and by 62% for a canola crop in 2013 (P < 0.05) compared with normal urea, but urea coated NBPT had no effect on N2O emission for the wheat crop in 2012. Neither nitrification nor urease inhibitors increased crop yields because the low rainfall experienced led to little potential for gross N loss through denitrification, leaching or volatilisation pathways. In such dry years, only government or other financial incentives for N2O mitigation would make the use of DMPP with applied N economically viable.


2013 ◽  
Vol 49 (2) ◽  
pp. 256-278 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation need of avocado are collated and reviewed in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information is given on the centre of origin (Mexico and Central America) and the three distinct ecological areas where avocados are grown commercially: (1) Cool, semi-arid climates with winter-dominant rainfall (e.g. Southern California, Chile, Israel); (2) Humid, subtropical climates with summer-dominant rainfall (e.g. eastern Australia, Mexico, South Africa); and (3) Tropical or semi-tropical climates also with summer-dominant rainfall (e.g. Brazil, Florida and Indonesia). Most of the research reported has been done in Australia, California, Israel and South Africa. There are three ecological races that are given varietal status within the species: Persea americana var. drymifolia (Mexican race), P. americana var. guatemalensis (Guatemalan race) and P. americana var. americana (Antillean, West Indian or Lowland race). Interracial crossing has taken place. This paper summarises the effects of water deficits on the development processes of the crop and then reviews plant–water relations, crop water requirements, water productivity and irrigation systems. Shoot growth in mature trees is synchronised into flushes. Flower initiation occurs in the autumn, with flowering in late winter and spring. Flowers form on the ends of the branches. A large heavily flowering tree may have over a million flowers, but only produce 200–300 fruits. Fruit load adjustment occurs by shedding during the first three to four weeks after fruit set and again in early summer. Water deficits during critical stages of fruit ontogeny have been linked to fruit disorders such as ring-neck. Reproductive growth is very resistant to water stress (compared with vegetative growth). Avocado is conventionally considered to be shallow rooted, although roots extend to depths greater than 1.5 m. The majority of feeder roots are found in the top 0.60 m of soil and root extension can continue throughout the year. Leaves develop a waxy cuticle on both surfaces, which is interrupted by stomata on the abaxial surface (350–510 mm−2), many of which are blocked by wax. Stomata are also present on the sepals and petals at low densities (and on young fruit). During flowering, the canopy surface area available for water loss is considerably increased. Stomatal closure is an early indicator of water stress, which together with associated changes in leaf anatomy, restricts CO2 diffusion. There have only been a few attempts to measure the actual water use of avocado trees. In Mediterranean-type climates, peak rates of water use (in summer) appear to be between 3 and 5 mm d−1. For mature trees, the crop coefficient (Kc) is usually within the range 0.4–0.6. The best estimate of water productivity is between 1 and 2 kg fruit m−3. Soil flooding and the resultant reduction in oxygen level can damage roots even in the absence of root rot. Avocado is particularly sensitive to salinity, notably that caused by chloride ions. Rootstocks vary in their sensitivity. Both drip and under-tree microsprinklers have been/are successfully used to irrigate avocado trees. Mulching of young trees is a recommended water conservation measure and has other benefits. A large proportion of the research reviewed has been published in the ‘grey’ literature as conference papers and annual reports. Sometimes, this is at the expense of reporting the science on which the recommendations are based in peer-reviewed papers. The pressures on irrigators to improve water productivity are considered.


2016 ◽  
Vol 154 (8) ◽  
pp. 1327-1342 ◽  
Author(s):  
T. K. DAS ◽  
K. K. BANDYOPADHYAY ◽  
RANJAN BHATTACHARYYA ◽  
S. SUDHISHRI ◽  
A. R. SHARMA ◽  
...  

SUMMARYIn search of a suitable resource conservation technology under pigeonpea (Cajanus cajanL.)–wheat (Triticum aestivumL.) system in the Indo-Gangetic Plains, the effects of conservation agriculture (CA) on crop productivity and water-use efficiency (WUE) were evaluated during a 3-year study. The treatments were: conventional tillage (CT), zero tillage (ZT) with planting on permanent narrow beds (PNB), PNB with residue (PNB + R), ZT with planting on permanent broad beds (PBB) and PBB + R. The PBB + R plots had higher pigeonpea grain yield than the CT plots in all 3 years. However, wheat grain yields under all plots were similar in all years except for PBB + R plots in the second year, which had higher wheat yield than CT plots. The contrast analysis showed that pigeonpea grain yield of CA plots was significantly higher than CT plots in the first year. However, both pigeonpea and wheat grain yields during the last 2 years under CA and CT plots were similar. The PBB + R plots had higher system WUE than the CT plots in the second and third years. Plots under CA had significantly higher WUE and significantly lower water use than CT plots in these years. The PBB + R plots had higher WUE than PNB + R and PNB plots. Also, the PBB plots had higher WUE than PNB in the second and third years, despite similar water use. The interactions of bed width and residue management for all parameters in the second and third years were not significant. Those positive impacts under PBB + R plots over CT plots were perceived to be due to no tillage and significantly higher amount of estimated residue retention. Thus, both PBB and PBB + R technologies would be very useful under a pigeonpea–wheat cropping system in this region.


Author(s):  
Ramesh Kumar ◽  
R.S. Yadav ◽  
Amit Kumawat ◽  
Vinay Nangia ◽  
N.D. Yadava ◽  
...  

Background: Freshwater in sufficient quantity and adequate quality is a prerequisite for human societies and natural ecosystems. To adequately feed 9.3 billion people in 2050, consumptive water use (i.e. transpired water) by all food and fodder crops needs to increase from its present estimated level of 7000 km3/year to 12,586 km3/year. However, fresh water resources are increasingly getting scarce because of increased competition among a multitude of users. Getting agriculture to perform with progressively smaller allocation of renewable water resources will remain a challenge on global scale. To meet the challenge there is an urgent need to improve the crop water productivity to ensure the sustainability of agriculture. Methods: An experiment was carried out at village Menawali, Hanumangarh, Rajasthan during both kharif and rabi seasons to assess productivity, economics, N-uptake and water use of different crops. An area of 187 ha comprising 25 farmers irrigated by common irrigation channels were selected to collect the information. The information required i.e. soil, crop management, growth, phonological, yields, water balance, N-uptake and water use efficiency of each crops were collected from 15 farmers. Bt-cotton and clusterbean of kharif and wheat and Indian mustard in rabi were prominent crops, cotton-wheat, cotton-mustard, clusterbean-wheat and clusterbean-mustard were major cropping sequences of the study region. Result: In kharif season, Bt-cotton gave higher economic yields than clusterbean and amongst rabi season crops, economic yields of wheat and mustard were 4255, 1778 kg/ha, respectively. The economic yield of cropping sequences varied from 3741-6514 kg/ha and were higher for cotton-wheat (6218 kg/ha), intermediate for clusterbean-wheat (5785 kg/ha) and lower for cotton-mustard (3741 kg/ha) and clusterbean-mustard (3308 kg/ha). The cotton-wheat (₹1181.2 mm) sequence had highest water use. Clusterbean-wheat cropping system recorded highest water productivity (16.5 kg/ha mm) followed by clusterbean-mustard (14.9 kg/ha mm). The clusterbean-mustard (₹456/ha mm) cropping sequence was most profitable and fetched highest net return followed by clusterbean-wheat (₹383/ha mm).


2019 ◽  
Vol 75 ◽  
pp. 27-35 ◽  
Author(s):  
Akbar Hossain ◽  
Rajan Bhatt

I Intensively practices rice-wheat (R-W) cropping system (RWCS) in South-Asia is suffering from many sustainability issues such as micronutrient deficiencies, labour scarcity, production cost, declining land, declining groundwater level and water productivity along with declining soil health.  Climate change further complex the things in one or other way. Therefore, the intervention of climate smart technologies are urgent for improving water productivity in an enormous water use RWCS of South-Asia. Although, farmers are confused regarding picking of suitable climate smart technology (CST) viz., laser land leveling, un-puddled direct-seeded rice (UPDSR), soil matric potential based irrigation, double zero tillage in wheat followed by rice, raised bed planting, short duration cultivars and correct transplantation time, for enhancing their livelihoods through increasing land and water productivity on one side and mitigating global warming consequences on other. Performance of these technologies is both site and situation specific, and care must be taken in practicing them. Most of them cutting down the drainage losses, which further reduces recharging of soil profile which is not required in water stressed regions while these might be termed as energy-saving technologies; otherwise used to withdraw water from the deeper soil depths. These CST are also useful for waterlogged regions. However, CST viz. correct transplantation time and short duration cultivars partition higher fraction of ET water (evapotranspiration) from E (evaporation) to T (transpiration) component which further favour higher grain yields and thus, higher water productivity. Therefore, it is crucial for the introduction of CST for improving agricultural and water productivity in the era of climate change in an enormous water use RWCS of South-Asia.


2020 ◽  
Vol 1 (1) ◽  
pp. 43-48
Author(s):  
Bisheshwor Prasad Pandey ◽  
Tanka Prasad Kandel

Recent decades have seen many changes in agricultural production systems in Nepal, such as increased mechanization for harvesting of major cereal crops, which leaves a large volume of crop residue in the field, increased herbicide application for weed control, and increased adoption of reduced tillage systems. In this study, we compared the effects of tillage, rice residue and weed managements on yield and yield attributes of wheat cultivated under rice-wheat rotation in the Southern Plain (Terai) region of Nepal. The study was conducted during the wheat growing seasons (November through April) of 2013–2014, 2014–2015 and 2015–2016 in Rupandehi district. The experiment was deployed in a split-split plot design with tillage system as main plot [conventional tillage (CT) and zero tillage (ZT)], residue removal management as a sub-plot [whole residue retained (WR), partial residue retained (PR) and no residue retained (NR)], and weed management as a sub-sub plot [(manual weeding (MW) and chemical weeding (CW)], replicated three times. Analysis of variance was applied to the yield and yield attributes of wheat for fixed and interaction effects. Averaged across the years, the CT system (2.4 t ha–1) had significantly higher yield than ZT (2.2 t ha–1) but the difference was not consistent in all study years. While rice residue retention did not influence grain yield in Year1, WR produced greatest and NR produced lowest yield in Year2 and Year3, indicating potential yield increase in wheat following the whole rice residue retention in the long run. Grain yield did not significantly vary with weed management method, suggesting that manual weed control can be as effective as herbicide in weed management in wheat agroecosystem in the Southern Plains (Terai) region of Nepal.


Sign in / Sign up

Export Citation Format

Share Document