The structure and evolution of the Northern Tyrrhenian Sea

1996 ◽  
Vol 133 (1) ◽  
pp. 1-16 ◽  
Author(s):  
J. V. A. Keller ◽  
M. P. Coward

AbstractField studies on the island of Elba and seismic lines from the Northern Tyrrhenian Sea, Italy, indicate that major extensional displacements were accommodated along east-dipping low-angle detachment faults. The rifting and subsidence in the Northern Tyrrhenian Sea basin have followed convergence and collision of the Corso-Sardinian block and the Apulian microplate. This collisional episode produced the Northern Apennines fold-and-thrust belt. Major extensional faults cut down-section through the stratigraphy and pre-existing west-dipping thrust faults. West-dipping thrusts can also be reactivated and form antithetic faults to the east-dipping detachments. Brittle deformation conditions predominated during the extensional phase. The geometry, internal structure and the fabrics (brittle and penetrative) associated with a well-exposed low-angle extensional detachment in Elba are presented in this paper. A geometrical model for the brittle extensional faulting is presented in which regional extension was accommodated on a system consisting of two sets of simultaneously active antithetic faults. The east-dipping detachment faults appear to have started at steeper angles, based on field and seismic observations, and rotated counter-clockwise to lower dips. Due to this rotation, and for space accommodation, antithetic west-dipping faults formed and rotated clockwise. A tectonic model is proposed whereby slowing of the convergence between Apulia and Corsica, as well as Tethys oceanic crust and Apulian crust subduction, led to the delamination of the Apulian litho-spheric mantle away from the crust. Accompanying asthenospheric upwelling and intrusion at the crust—mantle interface beneath the Tyrrhenian Sea caused late orogenic crustal stretching in the Northern Apennines internal zone.

2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


2021 ◽  
Vol 17 (2) ◽  
pp. 519-532
Author(s):  
Samuele Papeschi ◽  
Eric Ryan ◽  
Giovanni Musumeci ◽  
Francesco Mazzarini ◽  
Paolo Stefano Garofalo ◽  
...  

2017 ◽  
Vol 47 (2) ◽  
pp. 540
Author(s):  
E. Kamberis ◽  
S. Sotiropoulos ◽  
F. Marnelis ◽  
N. Rigakis

Thrust faulting plays an important role in the structural deformation of Gavrovo and Ionian zones in the central part of the ‘External Hellenides’ fold-and-thrust belt. The Skolis mountain in NW Peloponnese as well as the Varassova and Klokova mountains in Etoloakarnania are representative cases of ramp anticlines associated with the Gavrovo thrust. Surface geology, stratigraphic data and interpretation of seismic profiles indicate that it is a crustal-scale thrust acted throughout the Oligocene time. It is characterized by a ramp-flat geometry and significant displacement (greater than 10 km). Out of sequence thrust segmentation is inferred in south Etoloakarnania area. Down flexure and extensional faulting in the Ionian zone facilitated the thrust propagation to the west. The thrust emplacement triggered halokenetic movement of the Triassic evaporites in the Ionian zone as well as diapirisms that were developed in a later stage in the vicinity of the Skolis mountain.


2021 ◽  
Author(s):  
Ana M. Negredo ◽  
Carlos Clemente ◽  
Eugenio Carminati ◽  
Ivone Jiménez-Munt ◽  
Jaume Vergés ◽  
...  

<p>A number or previous studies indicate the possibility of post-collisional continental delamination in the northern Apennines. In this study we investigate by means of thermo-mechanical modelling the conditions for, and consequences of, delamination postdating continental subduction in this region. The modelled cross-section strikes approximately from Corsica to the Adriatic Sea. The initial model setup simulates the scenario at ca 20 Ma, where the oceanic lithosphere of the westward-subducting Adria plate was entirely consumed and some amount of continental subduction also occurred. The negative buoyancy of the slab remnant, together with the low viscosity of the dragged down lower continental crust, promote lithospheric mantle sinking into the mantle and asthenospheric upwelling and its lateral expansion along the lower crust. Consistent with geological data, the compressional front produced by delamination migrates about 260 km eastwards, causing a similar migrating pattern of extension from the northern Tyrrhenian Sea, to Tuscany and the seismogenically active Apennines backbone. The topographic response is computed by means of a true free-surface approach, and reflects the same eastward migrating pattern of uplift caused by asthenospheric inflow in the internal part of the system and crustal thickening; and subsidence at the front caused by the negative buoyancy of the sinking Adria slab. The conditions for the occurrence of magmatism and high heat flow beneath Tuscany are also explored. Simulations resulting in fast migration of the delamination front predict slab necking and breakoff, which could be consistent with the slab window observed beneath the central Apennines. Subcrustal seismicity beneath the Northern Apennines can be interpreted as the result to this incipient slab necking. This is a GeoCAM contribution (PGC2018-095154-B-I00)</p>


1997 ◽  
Vol 40 (3) ◽  
Author(s):  
A. Argnani ◽  
F. Frugoni

Seismic profiles in the Central Adriatic show the presence of a WNW-ESE trending belt (Central Adriatic Deformation Belt, CADB) where broad folds of Quaternary age occur. Seismicity in the Adriatic foreland seems to be localised along the CADB which is interpreted as the result of foreland deformation linked to the Apennine fold-and-thrust belt and possibly due to the presence of an inherited structural discontinuity. Geological arguments indicate that the CADB lineament can continue underneath the Northern Apennines and might have affected its recent evolution, characterised by the rise of a linear orographic front.


2021 ◽  
Author(s):  
Andrea Brogi

<p>The Neogene and Quaternary tectonic evolution of the inner Northern Apennines (i.e southern Tuscany and northern Tyrrhenian Sea), as well as its crustal features (i.e. low crustal thickness, Neogene-Quaternary magmatism, widespread geothermal anomalies, lateral segmentation of the stacked tectonic units, extensive deep sedimentary basins), are framed in different geodynamic scenarios: compressional, extensional or both, pulsing. Consequently, the basin and range structure that characterises the northern Tyrrhenian Sea and southern Tuscany is considered as a consequence of (i) out-of-sequence thrusts and related thrust-top-basins, (ii) polyphased normal faulting that formed horst and graben structures or (iii) a combination of both. This paper provides a new dataset from a sector of the eastern inner Northern Apennines (i.e. Monti del Chianti - Monte Cetona ridge) contributing to this scientific debate. New fieldwork and structural analysis carried out in selected areas along the ridge allowed to define the chronology of the main tectonic events on the basis of their influence on the marine and continental sedimentation. The dataset supports for early Miocene - (?) Serravallian in-sequence and out-of-sequence thrusting. Thrusting produced complex staking patterns of Tuscan and Ligurian Units. Extensional detachments developed since later middle Miocene and controlled the Neogene sedimentation in bowl-shaped structural depressions, later dissected by normal faults enhancing the accommodation space for Pliocene marine deposits in broad NNW-trending basins (Siena-Radicofani and Valdichiana Basins). In this perspective, no data supports for active, continuous or pulsing, compressional tectonics after late Serravalian. As a result, in the whole inland inner Northern Apennines the extensional tectonics was continuously active at least since middle Miocene and controlled the basins development, magmatism and structure of the crust and lithosphere.</p>


2021 ◽  
Author(s):  
Yujiro Ogawa ◽  
Shin’ichi Mori

ABSTRACT Discrimination between gravity slides and tectonic fold-and-thrust belts in the geologic record has long been a challenge, as both have similar layer shortening structures resulting from single bed duplication by thrust faults of outcrop to map scales. Outcrops on uplifted benches within the Miocene to Pliocene Misaki accretionary unit of Miura-Boso accretionary prism, Miura Peninsula, central Japan, preserve good examples of various types of bedding duplication and duplex structures with multiple styles of folds. These provide a foundation for discussion of the processes, mechanisms, and tectonic implications of structure formation in shallow parts of accretionary prisms. Careful observation of 2-D or 3-D and time dimensions of attitudes allows discrimination between formative processes. The structures of gravitational slide origin develop under semi-lithified conditions existing before the sediments are incorporated into the prism at the shallow surfaces of the outward, or on the inward slopes of the trench. They are constrained within the intraformational horizons above bedding-parallel detachment faults and are unconformably covered with the superjacent beds, or are intruded by diapiric, sedimentary sill or dike intrusions associated with liquefaction or fluidization under ductile conditions. The directions of vergence are variable. On the other hand, layer shortening structure formed by tectonic deformation within the accretionary prism are characterized by more constant styles and attitudes, and by strong shear features with cataclastic textures. In these structures, the fault surfaces are oblique to the bedding, and the beds are systematically duplicated (i.e., lacking random styles of slump folds), and they are commonly associated with fault-propagation folds. Gravitational slide bodies may be further deformed at deeper levels in the prism by tectonism. Such deformed rocks with both processes constitute the whole accretionary prism at depth, and later may be deformed, exhumed to shallow levels, and exposed at the surface of the trench slope, where they may experience further deformation. These observations are not only applicable in time and space to large-scale thrust-and-fold belts of accretionary prism orogens, but to small-scale examples. If we know the total 3-D geometry of geologic bodies, including the time and scale of deformational stages, we can discriminate between gravitational slide and tectonic formation of each fold-and-thrust belt at the various scales of occurrence.


2020 ◽  
Author(s):  
Alessandra Lanzoni ◽  
Anna Del Ben ◽  
Forlin Edy ◽  
Busetti Martina

<p>Since the discovery of widespread Salt and Gypsum deposits of the Mediterranean Sea in the early ’50s, a large number of scientists tried to unravel the mystery related to this huge deposition of evaporites. Evidence of the later so-called “Messinian Salinity Crisis” (MSC) are largely distributed all around the Mediterranean Basin and widely studied. Although gypsum deposits were recognized in some peripheral or marginal basins (e.g. Sorbas Basin in Spain, Northern Apennines in Italy), mechanism of their deposition and formation are still uncertain. Particularly, the so-called Gessoso-Solfifera formation (GS Fm) was recognized in the ’50s by Selli in several outcrops in Northern Apennines and it is nowadays well known and mapped in the on-shore outcrops.  A regional analysis in the Adriatic Sea is still incomplete, even though a large amount of data is available (2D multichannel seismic lines, boreholes, exploration reports). In the Adriatic Sea, the MSC event can be recognized in the 2D seismic lines as actual thin deposit (maximum GS Fm thickness of about 120 ms TWT) or Messinian erosional surface (MES). In both cases, a strong and clear reflector at the Pliocene base is picked and calibrated by the boreholes reaching its depth. Along the main part of the available seismic profiles it is sometimes very hard to ascribe this strong reflector to the MES or to the presence of a thin gypsum layer. <br>Calibration of 2D seismic lines with boreholes, also integrated by physical properties derived from geophysical well logs and core data) of the Plio-Quaternary sediments, allowed a detailed seismic facies analysis useful for this purpose. A structural map of the Plio-Quaternary base describes the Plio-Quaternary deformation that affected the study area mainly as Apennine foreland. The thickness map of the GS Fm describes the subsidence and the erosional effect occurred during the MSC. Both these maps are here presented as a first result of a regional study, that intends cover the whole Adria offshore.</p>


Sign in / Sign up

Export Citation Format

Share Document