Structural data from drill core

1994 ◽  
Vol 131 (5) ◽  
pp. 619-623
Author(s):  
Fernando Lopez-Diaz ◽  
Fernando Bastida

AbstractA graphical method for the analysis of the orientation of planar and linear structural elements in drill core is presented. Simple computation and projection operations applied to data taken from elements traced on the cylindrical surface of the core are required. To know a structural element(s) of reference, the method requires detailed structural analysis of the surface geology around the drill hole.

1985 ◽  
Vol 122 (6) ◽  
pp. 649-661 ◽  
Author(s):  
James G. Moore

AbstractGlassy basalt tuff was the primary material cored in 1979 from a 181 m deep drill hole on the east tuff ring of Surtsey volcano. Despite the fact that the hole extends 122 m below sea level all the core is similar to the exposed tephra composing the two tuff rings of the island. The tuff includes abundant accretionary lapilli and tuff vesicles, indicating that it was all deposited subaerially. During the growth of the tuff rings, repeated hydromagmatic explosion cycles began with a series of intermittent tephra-finger explosions leading up to continuous uprush explosions which lasted for several minutes to several hours. This nozzle-like continuous activity produced eruption columns 100–250 m in diameter and 500–2000 m in height which probably quarried several hundred metres below the ground surface. The continuous-uprush explosion type provides a reasonable mechanism to excavate a diatreme from the top down. During construction of the tuff rings, concentric faults repeatedly downdropped a funnel-like structure (400–800 m in diameter) several hundred metres, thus accounting for the presence of subaerially deposited tephra in the drill core far beneath sea level. Ring dykes later intruded upward along these faults and fed small lava flows. Heat in the surface tephra probably originated primarily from these shallow intrusions.


2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


2013 ◽  
Vol 11 (3) ◽  
pp. 285-292
Author(s):  
Dragoslav Stojic ◽  
Stefan Conic

In contemporary design, vehicle impact into the structures is paid great attention since they can be dominant, depending on the type of structure. The key issue in the vehicle impact analysis is the proper determination of intensity and way of action of dynamic forces on the structural element and its behavior after the imparted load. The Eurocodes, in the annexes provide recommendations for determination of force intensity depending on mass and velocity of the colliding vehicle. Equivalent static loads causing approximate effects on the structural elements are used as quite approximate and efficient methods. The paper comprises the analysis of deformation of columns having the same characteristics, exposed to impact loads via the equivalent static loads, depending on the stress state in columns, and a comparative analysis has been done.


2010 ◽  
Vol 5 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Brian Matthews ◽  
Shoaib Sufi ◽  
Damian Flannery ◽  
Laurent Lerusse ◽  
Tom Griffin ◽  
...  

In this paper, we present the Core Scientific Metadata Model (CSMD), a model for the representation of scientific study metadata developed within the Science & Technology Facilities Council (STFC) to represent the data generated from scientific facilities. The model has been developed to allow management of and access to the data resources of the facilities in a uniform way, although we believe that the model has wider application, especially in areas of “structural science” such as chemistry, materials science and earth sciences. We give some motivations behind the development of the model, and an overview of its major structural elements, centred on the notion of a scientific study formed by a collection of specific investigations. We give some details of the model, with the description of each investigation associated with a particular experiment on a sample generating data, and the associated data holdings are then mapped to the investigation with the appropriate parameters. We then go on to discuss the instantiation of the metadata model within a production quality data management infrastructure, the Information CATalogue (ICAT), which has been developed within STFC for use in large-scale photon and neutron sources. Finally, we give an overview of the relationship between CSMD, and other initiatives, and give some directions for future developments.    


Author(s):  
Michael Sonne Kristensen ◽  
Judy Edworthy ◽  
Elif Özcan

This article addresses the need of including acoustical perspectives in the debate on alarm fatigue within the healthcare domain. We show how conceptualisations and proposed solutions to alarm fatigue are unequally distributed across what could be called the ‘alarm chain’: a generic model of the core structural elements and dynamic relations that constitute any alarm scenario. A focal point in the alarm chain – the ‘alarm mediation cleft’ – seems to divide the alarm fatigue literature from the segment of the alarm literature that deals with auditory alarm design. The current healthcare discourse on alarm fatigue is centred around the ‘premediated alarm phase’, which has the consequence of an unfortunate dichotomous approach to the functionality of sound. We address some shortcomings of this approach and outline some methodological implications and potentials of searching for signs of alarm fatigue in the ‘post-mediated alarm phase’.


2016 ◽  
Vol 113 (52) ◽  
pp. 14994-14999 ◽  
Author(s):  
Monali NandyMazumdar ◽  
Yuri Nedialkov ◽  
Dmitri Svetlov ◽  
Anastasia Sevostyanova ◽  
Georgiy A. Belogurov ◽  
...  

Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β′ clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.


Author(s):  
Patricio A. A. Laura

Abstract A survey of studies dealing with vibrating structural elements using simple polynomial approximations in connection with Rayleigh-Ritz or Galerkin-type methods is presented. The classical use of polynomials when solving dynamic problems of deformable bodies consists of constructing a set of coordinate functions in such a way that they satisfy at least the essential boundary conditions and that they represent “reasonably well” the deformation field of the structural element under study. An alternative and more rational procedure has been developed and used in recent years whereby orthogonal polynomials are used. A “base function” is constructed and then one generates a set of orthogonal polynomials using the Gram-Schmidt or equivalent procedure. The present paper presents comparisons of numerical results in the case of different types of vibrating structural elements Special emphasis is placed on Rayleigh’s optimization procedure which consists of taking one of the exponents of the polynomial coordinate functions as an optimization parameter “γ”. Since the calculated eigenvalues constitute upper bounds, by minimizing them with respect to “γ” one is able to optimize the eigenvalues.


2019 ◽  
Vol 95 (4) ◽  
pp. 639-656 ◽  
Author(s):  
Erin L Meyer-Gutbrod ◽  
Li Kui ◽  
Mary M Nishimoto ◽  
Milton S Love ◽  
Donna M Schroeder ◽  
...  

There are thousands of offshore oil and gas platforms worldwide that will eventually become obsolete, and one popular decommissioning alternative is the "rigs to reefs" conversion that designates all or a portion of the underwater infrastructure as an artificial reef, thereby reducing the burden of infrastructure removal. The unique architecture of each platform may influence the size and structure of the associated fish assemblage if different structural elements form distinct habitats for fishes. Using scuba survey data from 11 southern California platforms from 1995 to 2000, we examined fish assemblages associated with structural elements of the structure, including the major horizontal crossbeams outside of the jacket, vertical jacket legs, and horizontal crossbeams that span the jacket interior. Patterns of habitat association were examined among three depth zones: shallow (<16.8 m), midwater (16.8–26 m), and deep (>26 m); and between two life stages: young- of-the-year and non-young-of-the-year. Fish densities tended to be greatest along horizontal beams spanning the jacket interior, relative to either horizontal or vertical beams along the jacket exterior, indicating that the position of the habitat within the overall structure is an important characteristic affecting fish habitat use. Fish densities were also higher in transects centered directly over a vertical or horizontal beam relative to transects that did not contain a structural element. These results contribute to the understanding of fish habitat use on existing artificial reefs, and can inform platform decommissioning decisions as well as the design of new offshore structures intended to increase fish production.


1971 ◽  
Vol 38 (295) ◽  
pp. 286-294 ◽  
Author(s):  
J. Pastor-Rodriguez ◽  
H. F. W. Taylor

SummaryThe crystal structure of coalingite (Mg10Fe2(OH)24(CO3)·2H2O) has been determined using single-crystal X-ray methods. The mineral is trigonal, with space group Rm, aH = 3·12, cH = 37·4 Å, Z = ½, and (0001) cleavage. The structure is of a layer type, and is based on a structural element about 12·5 Å thick in the c-direction and consisting of two brucite-like layers and one disordered layer containing carbonate ions and water molecules and resembling those in sjögrenite and pyroaurite. The unit cell comprises three of these structural elements stacked together in the c-direction. The Mg2+ and Fe3+ ions are randomly distributed among all the octahedral sites of the brucite-like layers. The structure closely resembles those of sjögrenite and pyroaurite, but has two brucite-like layers between each CO32−−H2O layer where these have one. There is a tendency to random interstratification, and the crystals appear to contain intergrown regions of brucite and of sjögrenite or pyroaurite. Coalingite-K probably has a similar structure, but with three brucite-like layers between each -H2O layer; its idealized formula is probably Mg16Fe2(OH)36(CO3).2H2O.


Sign in / Sign up

Export Citation Format

Share Document