Some Unmapped Faults in the Lower Carboniferous of Westmorland and their Relation to the Dent Fault System

1927 ◽  
Vol 64 (2) ◽  
pp. 80-85 ◽  
Author(s):  
A. A. Miller

Summary and Conclusions1. The Dent Fault diminishes in throw towards the north, and is almost non-existent 3 miles south of Kirkby Stephen.2. The principal line of dislocation is then displaced about a mile to the east, where there is a steep monoclinal fold, replaced sometimes by a fault, running in a direction parallel to the Dent Fault and also having a downthrow to the east.3. Further parallel faults, many of them hitherto unmapped, assist in the subsidence of the country to the east.4. Cross-faults, in most cases with downthrow to the south, accommodate the margin of the “Rigid Block” to local increase or decrease of throw.5. These two systems of faults are of approximately the same age, and were brought about by the same crustal movements.

1928 ◽  
Vol 65 (10) ◽  
pp. 433-448 ◽  
Author(s):  
F. M. Trotter ◽  
S. E. Hollingworth

The area covered by this paper embraces the northern end of the Pennines—the uplands of Lower Carboniferous rocks centred about Alston, together with the low ground of the Tyne-Irthing gap to the north. It is bounded on the west by the Vale of Eden. The Pennine portion is separated structurally from the regions to the north and west by the Stublick and Pennine Faults respectively. The former trends E.N.E., it has a downthrow to the north and has resulted in the preservation of the string of Coal Measures outliers which form a connecting link between the Cumberland and Northumberland coalfields. The Pennine Fault, trending S.S.E., with a throw of several thousand feet to the west, brings the New Red rocks of the Vale of Eden against the Lower Carboniferous beds of the Pennine Escarpment. These two faults meet at right angles near Castle Carrock. To the south the Pennine Fault dies out near Stainmore, and another dislocation, the Dent Fault, trending S.S.W., develops, and eventually links up with the Craven Faults which have an E.S.E. trend. These four faults, as pointed out by Professor Kendall, have the form of a reversed 3, and the region within this figure has become known generally as the Northumbrian Fault Block. Professor Marr has aptly termed the southern half of this area the “Rigid Block”. The northern half of the Northumbrian Fault Block, which will be shown to possess many characters in common with the southern half, is here called the “Aiston Block”. Its limits are defined on three sides—by the Stublick Fault on the north, the Pennine Fault on the west, and by the Stainmore depression on the south. The last thus divides the Northumbrian Fault Block into two, physiographically and structurally. The eastern boundary of the Alston Block is concealed beneath the Mesozoic rocks.


2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


2021 ◽  
Author(s):  
Nemanja Krstekanic ◽  
Liviu Matenco ◽  
Uros Stojadinovic ◽  
Ernst Willingshofer ◽  
Marinko Toljić ◽  
...  

<p>The Carpatho-Balkanides of south-eastern Europe is a double 180° curved orogenic system. It is comprised of a foreland-convex orocline, situated in the north and east and a backarc-convex orocline situated in the south and west. The southern orocline of the Carpatho-Balkanides orogen formed during the Cretaceous closure of the Alpine Tethys Ocean and collision of the Dacia mega-unit with the Moesian Platform. Following the main orogen-building processes, the Carpathians subduction and Miocene slab retreat in the West and East Carpathians have driven the formation of the backarc-convex oroclinal bending in the south and west. The orocline formed during clockwise rotation of the Dacia mega-unit and coeval docking against the Moesian indenter. This oroclinal bending was associated with a Paleocene-Eocene orogen-parallel extension that exhumed the Danubian nappes of the South Carpathians and with a large late Oligocene – middle Miocene Circum-Moesian fault system that affected the orogenic system surrounding the Moesian Platform along its southern, western and northern margins. This fault system is composed of various segments that have different and contrasting types of kinematics, which often formed coevally, indicating a large degree of strain partitioning during oroclinal bending. It includes the curved Cerna and Timok faults that cumulate up to 100 km of dextral offset, the lower offset Sokobanja-Zvonce and Rtanj-Pirot dextral strike-slip faults, associated with orogen parallel extension that controls numerous intra-montane basins and thrusting of the western Balkans units over the Moesian Platform. We have performed a field structural study in order to understand the mechanisms of deformation transfer and strain partitioning around the Moesian indenter during oroclinal bending by focusing on kinematics and geometry of large-scale faults within the Circum-Moesian fault system.</p><p>Our structural analysis shows that the major strike-slip faults are composed of multi-strand geometries associated with significant strain partitioning within tens to hundreds of metres wide deformation zones. Kinematics of the Circum-Moesian fault system changes from transtensional in the north, where the formation of numerous basins is controlled by the Cerna or Timok faults, to strike-slip and transpression in the south, where transcurrent offsets are gradually transferred to thrusting in the Balkanides. The characteristic feature of the whole system is splaying of major faults to facilitate movements around the Moesian indenter. Splaying towards the east connects the Circum-Moesian fault system with deformation observed in the Getic Depression in front of the South Carpathians, while in the south-west the Sokobanja-Zvonce and Rtanj-Pirot faults splay off the Timok Fault. These two faults are connected by coeval E-W oriented normal faults that control several intra-montane basins and accommodate orogen-parallel extension. We infer that all these deformations are driven by the roll-back of the Carpathians slab that exerts a northward pull on the upper Dacia plate in the Serbian Carpathians. However, the variability in deformation styles is controlled by geometry of the Moesian indenter and the distance to Moesia, as the rotation and northward displacements increase gradually to the north and west.</p>


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 43-78
Author(s):  
Paul L. Brenckle ◽  
Maurizio Gaetani ◽  
Lucia Angiolini ◽  
Maryamnaz Bahrammanesh

ABSTRACT Detailed sampling of limestones from the Mobarak Formation at the Abrendan and Abnak measured sections in the eastern and central Alborz Mountains, northern Iran, yielded a diverse assemblage of Tournaisian – Lower Visean (Mississippian/Lower Carboniferous) calcareous microfossils (foraminifers, algae, incertae sedis). The Abrendan locality contains Tournaisian foraminifers in the upper part of the formation that correlate to the Ivorian and upper Courceyan – lower Chadian substages of western Europe and the Kosvinsky Horizon of the Russian Platform. Brachiopods confirm a Tournaisian age for the lower part of the Mobarak, which lacks age-diagnostic calcareous microfossils. Lower Visean foraminifers at Abnak provide good correlation to the western European Moliniacian and Arundian substages and the Russian Bobrikovsky Horizon. Synthesis of foraminiferal data from this and other published reports indicates that the top of the Mobarak Formation becomes increasingly older across the Alborz to the southeast, caused most likely by Pennsylvanian (Upper Carboniferous) exposure and erosion in the south followed by a latest Pennsylvanian – Early Permian transgression from the north. The microbiota at both sections and the macrofossils at Abrendan show close affinity to the warm-water Paleo-Tethyan Ocean, seemingly contradicting Early Mississippian paleomagnetic reconstructions placing the Alborz region at 45–50° South latitude. The discrepancy is not resolvable at this time, but the answer may lie in the circulation of Paleo-Tethyan currents to the south along the Gondwanan shelf, rather than to repositioning the Alborz region to the northern side of the Paleo-Tethyan Ocean.


1992 ◽  
Vol 63 (3) ◽  
pp. 233-241 ◽  
Author(s):  
M.B. Goldhaber ◽  
C.J. Potter ◽  
C.D. Taylor

Abstract An 82.8 km segment of a northwest-southeast trending seismic-reflection profile across the northernmost part of the Reelfoot rift shows that the Cambrian rift geometry there is quite distinct from that of the main part of Reelfoot rift to the south, and that of the Rough Creek graben to the east. The profile is within the area of intersection of the Reelfoot rift and Rough Creek graben and shows a systematic southeastward thickening of the Cambrian synrift clastic sequence with as much as 1940 meters of section present against the Pennyrile fault system as compared to 970 meters near the Lusk Creek and Shawneetown fault systems, towards the northwestern margin of the rift. This contrasts with the more symmetric rift pattern in the seismically active zone to the south, where the maximum thickness of synrift sediments is along the rift axis, and with an opposite sense of rift asymmetry in the Rough Creek graben, where the synrift sequence thickens to the north against the Rough Creek - Shawneetown fault. Reflection patterns in the vicinity of Hicks dome, a “cryptovolcano”, are consistent with the hypothesis that the dome originated by explosive release of mantle-derived gases associated with alkali volcanism. The seismic data also reveal that the fluorine mineralization in the area is associated with faults that offset basement; this is further evidence that deeply-derived fluids are significant in the geologic evolution of the area.


The deposits of Upper Palæozoic age in the south-west of England differ remarkably in their general characters from those developed on the north side of the Bristol Channel. This conclusion applies not only to the Devonian rocks, but also to the succeeding Carboniferous series. In South Wales and Monmouth, the Devonian beds are of the Old Red Sandstone type, whereas, the Devonian succession of North Devon exhibits a marked, though not an entire change, in both petrological characters and palæontological facies; a change which becomes even more marked in the series of limestones, volcanic, and detrital deposits developed in the southern portion of that county. The South Wales coalfield, the largest and most important productive measures in this country, consists of a sequence of coal-bearing strata, resting upon beds of Lower Carboniferous age, for the most part similar in character to those occurring in our other English coalfields. In Devonshire, and in portions of the neighbouring counties of Somerset and Cornwall, a Carboniferous basin of considerable size is developed, occupying more than 1,200 square miles. In many important respects these rocks again differ somewhat markedly from their equivalents in South Wales. They form a succession of deposits of a somewhat abnormal type; being composed of sediments of extremely varied nature and origin, both detrital and organic. They are especially characterised by a general absence of carbonaceous material of any economic importance. These Carboniferous rocks are spoken of as the Culm Measures, a name first applied to them by Sedgwick and Murchison in 1837. These authors in their classic memoir, published in 1840, gave the first accurate description of the physical structure of the beds, and proved conclusively their Carboniferous age. It may be pointed out, however, that De la Beche, in 1834, was the first to indicate the Upper Carboniferous age of that portion of the Culm Measures which forms the subject of this memoir; his conclusion being based on plant remains identified by Professor Lindley. De la Beche also added considerably to our knowledge of the Culm Measures in his ‘Report on the Geology of Cornwall and Devon,’ published in 1839. Since then, John Phillips, Holl, T. M. Hall, and others, and, in more recent times, Messrs. Hinde and Fox, and Mr. Ussher, have all contributed important information on this subject.


1928 ◽  
Vol 65 (1) ◽  
pp. 12-25 ◽  
Author(s):  
F. Smithson

From the southern shores of Dublin Bay there stretches to the south-west a broad granite intrusion with rocks of supposed Ordovician age on both sides of it. These rocks are metamorphosed near the granite, and the belt of metamorphism is wider on the south-east than on the north-west side, indicating, no doubt, that the plane of junction dips more steeply on the latter side. Near Dublin the Lower Carboniferous rocks rest unaltered upon the granite. On the south-east side, in the northern part of the county of Wicklow, the belt of Ordovician rocks is only some 2 miles wide, and a large area of supposed Cambrian rocks lies between it and the sea. Around the hill of Carrickgollogan a. patch of similar rocks appears incongruously in the middle of the Ordovician belt. After a study of the region to the south of Dublin one seems to be naturally drawn towards this small area around Carrickgollogan, for it presents a problem, the key to which may explain the geological structure of a much wider area.


1966 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
T. J. Brady ◽  
W. Jauncey ◽  
C. Stein

An estimated total of over 20,000 feet of Palaeozoic sediments accumulated in the Bonaparte Gulf Basin. The thickest known continuous section is that in Bonaparte No. 1 Well, abandoned at 10,530 feet in Upper Devonian sandstone and shale. Rocks of the Basin margins are mainly sandstones and limestones (in part reef), whereas a thick shale section has been discovered in the deeper parts. Data from recent seismic surveys indicate that the seaward extension of the Basin is considerable and that a thick pile of sediments is preserved there.The Bonaparte Gulf Basin formed as a result of subsidence of the north-eastern part of the Kimberley Block along fault lines associated with the Halls Creek Mobile Zone. This zone borders the south-eastern margin of the Basin and trends north-east. One basement block, represented by the presentday Pincombe Range, remained relatively high. The Bonaparte Gulf Basin can be divided into two subsidiary basins, the Carlton Basin to the west and north-west and the Burt Range Basin in the east and south-east. The Pincombe Range separates the two.Marine sediments were deposited in the Carlton Basin during the Middle and Upper Cambrian, Lower Ordovician, Upper Devonian and Lower Carboniferous epochs. Angular unconformities have been mapped between the Lower Ordovician and Upper Devonian rocks, and between Upper Devonian and Lower Carboniferous rocks. In the Burt Range Basin, deposition began in the Upper Devonian and continued with minor breaks through the Lower Carboniferous. Faults along the south-eastern margin were active through this period and affected the character of the sediments.Permian sediments are widely distributed and lie with unconformity on older units.


2002 ◽  
Vol 139 (4) ◽  
pp. 473-487 ◽  
Author(s):  
F. OCAKOĞLU

Determination of the relationships between the southern, marine-dominated Miocene basins of south central Turkey and their continental hinterland in southern Turkey has traditionally been frustrated by the apparent absence of basin remnants within the Taurus Mountains. The Dikme basin, which seems to be an enclave of basin remnants within the Aladağ Mountains (Eastern Taurides), consists mainly of coarse-grained continental sediments of various facies. These mostly early–middle Miocene sediments were studied to determine the depositional environments and the factors controlling the basin formation and basin fill architecture, to attempt to close the information gap between the Adana Basin to the south and central Anatolian Miocene further to the north. A generally southwest-flowing axial fluvial system and interfingering coarse-grained marginal alluvial clastics derived from northwest and southeast were identified. The marginal facies to the northwest is bounded by a N 55° E-running structural lineament, that starts from the Ecemiş Fault Zone and in digital elevation models extends toward the north of the study area. Along this lineament, Miocene sediments onlap steep fault-line escarpments. Certain Miocene levels are tectonically disrupted, and an intraformational unconformity and boulder conglomerates are also well-developed in the Miocene sequence. The southeast boundary is similarly defined by a NE-trending fault that periodically elevated the adjacent Tufanbeyli autochthon, producing coarse clastics from this area. This boundary fault also induced fining-upwards vertical patterns and synsedimentary deformation in the marginal facies. Additionally, the central part of the basin exhibits a distinct fault-defined morphology characterized by small-scale (tens of metres to 150 m high) valley-and-sill topography. A thin marine interval was also encountered in the southernmost part of the basin, indicating that the clastic system originating around this area debouched into a Miocene sea situated further to the south. The proposed palaeogeography and basin fill model suggests that the Dikme basin and similar Miocene remnants, all controlled mainly by a northeast-running extensional or transtensional fault system, may have been parts of the terrestrial hinterland that supplied sediment to rapidly subsiding marine areas further south, such as the Adana Basin.


Sign in / Sign up

Export Citation Format

Share Document