Palaeoenvironmental analysis of a Miocene basin in the high Taurus Mountains (southern Turkey) and its palaeogeographical and structural significance

2002 ◽  
Vol 139 (4) ◽  
pp. 473-487 ◽  
Author(s):  
F. OCAKOĞLU

Determination of the relationships between the southern, marine-dominated Miocene basins of south central Turkey and their continental hinterland in southern Turkey has traditionally been frustrated by the apparent absence of basin remnants within the Taurus Mountains. The Dikme basin, which seems to be an enclave of basin remnants within the Aladağ Mountains (Eastern Taurides), consists mainly of coarse-grained continental sediments of various facies. These mostly early–middle Miocene sediments were studied to determine the depositional environments and the factors controlling the basin formation and basin fill architecture, to attempt to close the information gap between the Adana Basin to the south and central Anatolian Miocene further to the north. A generally southwest-flowing axial fluvial system and interfingering coarse-grained marginal alluvial clastics derived from northwest and southeast were identified. The marginal facies to the northwest is bounded by a N 55° E-running structural lineament, that starts from the Ecemiş Fault Zone and in digital elevation models extends toward the north of the study area. Along this lineament, Miocene sediments onlap steep fault-line escarpments. Certain Miocene levels are tectonically disrupted, and an intraformational unconformity and boulder conglomerates are also well-developed in the Miocene sequence. The southeast boundary is similarly defined by a NE-trending fault that periodically elevated the adjacent Tufanbeyli autochthon, producing coarse clastics from this area. This boundary fault also induced fining-upwards vertical patterns and synsedimentary deformation in the marginal facies. Additionally, the central part of the basin exhibits a distinct fault-defined morphology characterized by small-scale (tens of metres to 150 m high) valley-and-sill topography. A thin marine interval was also encountered in the southernmost part of the basin, indicating that the clastic system originating around this area debouched into a Miocene sea situated further to the south. The proposed palaeogeography and basin fill model suggests that the Dikme basin and similar Miocene remnants, all controlled mainly by a northeast-running extensional or transtensional fault system, may have been parts of the terrestrial hinterland that supplied sediment to rapidly subsiding marine areas further south, such as the Adana Basin.

1999 ◽  
Vol 36 (3) ◽  
pp. 433-458 ◽  
Author(s):  
Jeffrey M Trop ◽  
Kenneth D Ridgway ◽  
Arthur R Sweet ◽  
Paul W Layer

Analysis of Upper Cretaceous sedimentary and volcanic strata in the Wrangell Mountains of south-central Alaska provides an opportunity to study the tectonics, depositional systems, and provenance of a forearc basin that developed along an accretionary convergent plate boundary. New data from the 1150 m thick MacColl Ridge Formation indicate that deposition occurred during the Campanian on a coarse-grained submarine fan that was derived from an uplifted allochthonous terrane exposed in the hanging wall of a fault system that separated the forearc basin from the subduction complex. New age controls include palynoflora indicative of a late middle to late Campanian age, and compatible radiometric age determinations of volcanic vitric-crystal tuffs near the top of the formation which have 40Ar/39Ar isochron ages of 79.4 ± 0.7 and 77.9 ± 2.1 Ma. Sedimentological and paleontological data show that sedimentation occurred on the inner portions of a sand- and gravel-rich submarine fan system. Evidence for this interpretation includes dominance of channelized sediment gravity flow deposits, particularly turbidites and debris flows; microflora indicative of open-marine conditions; unidirectional paleocurrent indicators; and syndepositional slump features. The pyroclastic eruptions that formed the vitric-crystal tuffs of the MacColl Ridge Formation are interpreted as products of the Late Cretaceous Kluane magmatic arc that bordered the forearc basin to the north. Sandstone and conglomerate compositional data combined with northward-directed paleocurrent indicators suggest that detritus was derived mainly from igneous rocks of the allochthonous Wrangellia terrane located in the hanging wall of the Border Ranges fault system along the southern margin of the basin. From a regional perspective, deposition of the MacColl Ridge Formation was coeval with the early part of Campanian-Maastrichtian synorogenic sedimentation and contractile deformation documented throughout the northwestern Cordillera.


2005 ◽  
Vol 176 (5) ◽  
pp. 443-455 ◽  
Author(s):  
Michel Bilotte ◽  
Laurent Koess ◽  
Elie-Jean Debroas

Abstract In the eastern part of the Aquitaine Basin and to the south of the Toulouse high, the Subpyrenean trough is a narrow trench oriented N110°E to N130° E. The deposits on the northeastern side of this depression are preserved in the autochthonous Mesozoic cover of the Variscan Mouthoumet Massif, but also in the parautochthonous or allochthonous tectonic units that fringe to the north (Camps – Peyrepertuse slice, fig. 2) the North Pyrenean frontal thrust. From the Middle Cenomanian to the Lower Santonian included (96 to 85 Ma ago), the sedimentation in the Mouthoumet Massif indicates shallow marine carbonate or mixed (carbonate to terrigenous) conditions. The different facies depend mainly on two parameters : the variations of the accommodation space for sedimentation and the location of the numerous rudist buildups. The deposits are first organized in a homoclinal ramp until the Turonian. From the Coniacian up to the early Santonian, drowned platform patterns prevail. During the late Santonian and more precisely around 85 Ma with an other event around 84 Ma, the Mouthoumet Massif and its cover broke up under tectonic stresses. Positive and negative topographies reactivate the Variscan fault system. Platform – slope/basin morphologies substituted the preceeding ramp and drowned platform morphology. Looking to the south and in the direction N120°E, the distal slope received gravitational and turbiditic sediments called the Grès de Labastide (fig. 7). The sediment supply shifted from north to south and from east to west. To the north of this slope, the platform itself broke up into a mosaic of rhomboedric blocks, leading to a graben and horst morphology. Those units are clearly different according to the character of their sedimentary facies, deltaic or reefal (Montagne des Cornes, Calcaires de Camps – Peyrepertuse). The detailed stratigraphic and sedimentologic studies of some of these systems reveal a tectono-sedimentary evolution involving two successive cycles Ss1 (lower Upper Santonian) and Ss2 (Uppermost Santonian). In the western part of the Mouthoumet Massif this cyclic evolution is recorded from south to north, on the Parahou slope, the Rennes-les-Bains graben and the Bugarach horst. The lower cycle Ss1, located on the Rennes-les-Bains graben, is approximatively 85 Ma to 84 Ma in age. It starts with reworked deposits (lowstand systems tract) made up of sometimes several m3 elements derived from former sedimentary deposits (from Turonian up to Lower Santonian) even when the same deposits are in place on the adjacent horsts (e.g. the eastern horst of Bugarach). Those reworked deposits fill the bottom of the graben, principally in the transit zones (debris-flows of the Conglomerat de la Ferrière), or in the Parahou slope (slumps and debris-flows of the Cascade des Mathieux); then the deltaic complex of Rennes-les-Bains covers the older chaotic deposits; the blue marls and the overlying sandy facies (transgressive and highstand systems tracts) related to prodelta and deltafront deposits represent the infilling of the Rennes-les Bains graben. The upper cycle Ss2 developed probably between 84 Ma to 83,5 Ma; its geographical extension overlaps the limits of the lower cycle (e.g. the Bugarach horst), but its sedimentary organisation is still the same including: on the Parahou slope debris-flow and intrabasinal reworking (Conglomérat des Gascous: lowstand systems tract); on the northern platform transgressive and highstand systems tracts, present in the Montagne des Cornes delta where the Marnes bleues de Sougraigne represent the prodelta deposits, and the terrigenous and rudist buildups of the delta front deposits (fig.7). The final infilling results from the spreading from NE to SW, of the (estuarine ? to) fluvial deposits of the Grès d’Alet Formation at around 83 Ma. In the eastern part of the Mouthoumet Massif, sedimentary development is punctuated by tectonic events. Nevertheless, it is possible to identify in some outcrops the main elements of the two tectono-sedimentary cycles. – The cycle Ss1 is partly preserved in the genetic sequence which links the Calcaires de Camps-Peyrepertuse (shelf margin wedge systems tract) and the Marnes du Pla de Sagnes (transgressive systems tract). The cycle Ss2 is only known through different facies of the Grès de Labastide Formation: reworked deposits on the slope; coarse-grained silicoclastic deposits on the transit zones. – In the cycle Ss1 differences appear between the western and the eastern parts of the Mouthoumet massif. When in the western area deltaic conditions prevailed, in the eastern area a shallow carbonate and buildup facies developed. Such differences disappear in the cycle Ss2 by the general establishment of fore slope deltaic deposits. The geodynamic reconstruction resulting from plate kinematics indicates a major change between the early Coniacian (89 Ma) and the Middle Campanian (79 Ma), when the sinistral/divergent motion of Iberia with respect to stable Europe turned to a dextral/convergent movement. The tectono-sedimentary events presented here took place during this period (85 Ma to 83 Ma). The tectono-sedimentary evolution of the subpyrenean trough and the shift of the European and Iberian plates are thought to be intimately linked. The new chronological and geodynamical data proposed herein show that the genesis and the evolution of the subpyrenean sedimentary processes related to the northern Aquitanian margin of the Subpyrenean trough allow to draw some basic conclusions: – the opening of the Subpyrenean trough occurred in two steps, the first around 85 Ma and the second around 84 Ma; – this caused a change in the sedimentary setting with platform environments replacing the earlier ramp geometry; – the Subpyrenean trough formed and evolved under transtensive tectonic conditions; – during the late Santonian two tectono-eustatic sequences marked the former stages of the eastward opening and infilling of this basin; – the diachronous infilling which began here around 83,5 Ma prograded to the western Plantaurel and Petites-Pyrénées area; – no significant northward shifting of the depositional-axis of the Senonian basins occurred; – only a gradual westward shift of the depositional centers, along the subpyrenean direction of the slope area (N110°E to N130°E) was noticed.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>


GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 77-102 ◽  
Author(s):  
Mahbub Hussain ◽  
Lameed O. Babalola ◽  
Mustafa M. Hariri

ABSTRACT The Wajid Sandstone (Ordovician-Permian) as exposed along the road-cut sections of the Abha and Khamis Mushayt areas in southwestern Saudi Arabia, is a mediun to coarse-grained, mineralogically mature quartz arenite with an average quartz content of over 95%. Monocrystalline quartz is the dominant framework grain followed by polycrystalline quartz, feldspar and micas. The non-opaque heavy mineral assemblage of the sandstone is dominated by zircon, tourmaline and rutile (ZTR). Additional heavy minerals, constituting a very minor fraction of the heavies, include epidote, hornblende, and kyanite. Statistical analysis showed significant correlations between zircon, tourmaline, rutile, epidote and hornblende. Principal component R-mode varimax factor analysis of the heavy mineral distribution data shows two strong associations: (1) tourmaline, zircon, rutile, and (2) epidote and hornblende suggesting several likely provenances including igneous, recycled sedimentary and metamorphic rocks. However, an abundance of the ZTR minerals favors a recycled sedimentary source over other possibilities. Mineralogical maturity coupled with characteristic heavy mineral associations, consistent north-directed paleoflow evidence, and the tectonic evolutionary history of the region indicate a provenance south of the study area. The most likely provenances of the lower part (Dibsiyah and Khusayyan members) of the Wajid Sandstone are the Neoproterozoic Afif, Abas, Al-Bayda, Al-Mahfid, and Al-Mukalla terranes, and older recycled sediments of the infra-Cambrian Ghabar Group in Yemen to the south. Because Neoproterozic (650-542 Ma) rocks are not widespread in Somalia, Eritrea and Ethiopia, a significant source further to the south is not likely. The dominance of the ultrastable minerals zircon, tourmaline and rutile and apparent absence of metastable, labile minerals in the heavy mineral suite preclude the exposed arc-derived oceanic terrains of the Arabian Shield in the west and north as a significant contributor of the sandstone. An abundance of finer-grained siliciclastic sequences of the same age in the north, is consistent with a northerly transport direction and the existence of a deeper basin (Tabuk Basin?) to the north. The tectonic and depositional model presented in this paper differs from the existing model that envisages sediment transportation and gradual basin filling from west to east during the Paleozoic.


1989 ◽  
Vol 79 (2) ◽  
pp. 252-281
Author(s):  
R. V. Sharp ◽  
K. E. Budding ◽  
J. Boatwright ◽  
M. J. Ader ◽  
M. G. Bonilla ◽  
...  

Abstract The M 6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9 km; the maximum observed surface slip, 12.5 cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M 6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. Surface rupture associated with the second event occurred along three strands of the zone, here named North and South strands of the Superstition Hills fault and the Wienert fault, for 27 km southeastward from the epicenter. In contrast to the left-lateral faulting, which remained unchanged throughout the period of investigation, the right-lateral movement on the Superstition hills fault zone continued to increase with time, a behavior that was similar to other recent historical surface ruptures on northwest-trending faults in the Imperial Valley region. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. Data for each of the 49 sites were used to compute longitudinal displacement profiles for 1 day and to estimate the final displacement that measured slips will approach asymptotically several years after the earthquakes. The maximum right-lateral slip at 1 day was about 50 cm near the south-central part of the North strand of Superstition Hills fault, and the predicted maximum final displacement is probably about 112 cm at Imler Road near the center of the South strand of the Superstition Hills fault. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is about 54 cm. The average left-lateral slip for the conjugate faults trending northeastward is about 23 cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4 km. The southern half of this fault, south of New River, expressed only vertical displacement on a sinuous trace. The maximum vertical slip by the end of the observation period there was about 25 cm, but its growth had not ceased. Photolineaments southeast of the end of new surface rupture suggest continuation of the Superstition Hills fault zone in farmland toward Mexico.


2017 ◽  
Vol 27 (5) ◽  
pp. 718-730 ◽  
Author(s):  
David C. Zlesak ◽  
Randy Nelson ◽  
Derald Harp ◽  
Barbara Villarreal ◽  
Nick Howell ◽  
...  

Landscape roses (Rosa sp.) are popular flowering shrubs. Consumers are less willing or able to maintain landscape beds than in years past and require plants that are not only attractive, but well-adapted to regional climatic conditions, soil types, and disease and pest pressures. Marketing and distribution of rose cultivars occurs on a national level; therefore, it is difficult for U.S. consumers in the U.S. Department of Agriculture (USDA) Plant Hardiness Zones 3 to 5 to identify well-adapted, cold-hardy cultivars. Identifying suitable cultivars that have strong genetic resistance to pests and disease and that will tolerate temperature extremes without winter protection in the USDA Plant Hardiness Zones 3 to 5 is of tremendous value to consumers and retailers in northern states. Twenty landscape rose cultivars, primarily developed in north-central North America, were evaluated at five locations in the United States (three in the north-central United States, one in the central United States, and one in the south-central United States) using the low-input, multiyear Earth-Kind® methodology. Six roses had ≥75% plant survival at the end of the study and were in the top 50% of performers for overall mean horticultural rating at each of the three north-central U.S. sites: ‘Lena’, ‘Frontenac’, ‘Ole’, ‘Polar Joy’, ‘Sunrise Sunset’, and ‘Sven’. Five of these six roses met the same criteria at the central United States (exception ‘Lena’) and the south-central United States (exception ‘Polar Joy’) sites. Cultivar, rating time, and their interaction were highly significant, and block effects were not significant for horticultural rating for all single-site analyses of variance. Significant positive correlations were found between sites for flower number, flower diameter, and overall horticultural rating. Significant negative correlations were found between flower number and diameter within each site and also between black spot (Diplocarpon rosae) lesion size from a previous study and overall horticultural rating for three of the five sites. Cane survival ratings were not significantly correlated with overall horticultural rating, suggesting some cultivars can experience severe winter cane dieback, yet recover and perform well. Data from this study benefit multiple stakeholders, including nurseries, landscapers, and consumers, with evidence-based regional cultivar recommendations and breeders desiring to identify regionally adapted parents.


2010 ◽  
Vol 28 (10) ◽  
pp. 1905-1922 ◽  
Author(s):  
M. T. Prtenjak ◽  
I. Tomažić ◽  
I. Kavčič ◽  
S. Đivanović

Abstract. Characteristics of thermally induced flow, namely the sea breeze, are investigated along the south-eastern Adriatic. The chosen period 24–25 April 2006 favoured sea breeze development and simultaneously allowed a comparison of the large-scale wind influence (north-westerly wind versus south-easterly wind) and the complex terrain on the local circulations. Particular attention is paid to the small-scale formation of the wind field, convergence zones (CZs), channelling flows and small scale eddies, especially in the vicinity of two airports in the central part of south-eastern Adriatic. The results are based on wind measurements (from meteorological surface stations, radiosoundings, satellite data and sodar data) and further supplemented by model data at fine grid spacing. This study shows the formation of numerous irregular daytime and nighttime CZs, which occurred along the coastline in the lee of mountains and over the larger, elongated islands. The results show that the above mentioned airports are surrounded by daytime CZ formations within the lowermost 1000 m and associated updrafts of 1 m s−1, especially if CZs are maintained by the north-westerly large-scale winds. Whereas the daytime CZ was generated due to merged sea breezes, the weaker and shallower nighttime CZs were formed by wind convergence of the seaward breezes, and significantly modified by the large-scale flow of the topography (e.g., accelerated flow in the sea channels and substantial swirled flows around the islands). The passes between the coastal mountain peaks changed the inflow penetration, provoking the increase in wind speed of the channelled flow. The strongest sea breeze channelling was observed above the valley of the Neretva River, where the onshore flow reached 40 km inland with a strength of 8 m s−1, and the highly asymmetric offshore part was confined within the sea channel.


2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


Sign in / Sign up

Export Citation Format

Share Document