Ecostratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods

2009 ◽  
Vol 146 (5) ◽  
pp. 717-731 ◽  
Author(s):  
CHRISTIAN M. Ø. RASMUSSEN ◽  
ARNE T. NIELSEN ◽  
DAVID A. T. HARPER

AbstractA detailed ecostratigraphical framework is established for the lower Middle Ordovician Kundan regional stage of the East Baltic area corresponding to the Asaphus expansus, A. raniceps and A. eichwaldi trilobite zones (lower Darriwilian). The study is based on approximately 6200 brachiopods collected bed by bed from limestone sections in northern Estonia (Harku Trench and Saka) and western Russia (Putilovo Quarry, Lava River canyon and Lynna River valley) with, in addition, the first detailed systematic assessment of the Kundan brachiopods of the East Baltic. These sections represent an oblique depth transect some 400 kilometres long, deepening eastwards. Five biofacies associations have been recognized using detrended correspondence and cluster analyses: a shallow-water Lycophoria association, a transitional Gonambonites association and two deeper-water associations, the soft-substrate Orthis callactis and the hard-substrate Orthambonites associations. A separate, fifth soft-substrate association is present in the marl beds at the main locality of Putilovo Quarry. The associations reflect a combination of palaeo-water depth and substrate. The biofacies facilitate an ecostratigraphical correlation along the transect, and third and fourth order sea-level curves are reconstructed, reflecting mainly eustasy. The sea-level was relatively low, early in the Kundan, but then rose significantly into the A. raniceps Biozone. This corroborates the recent discovery of possible small early Darriwilian ice caps on Gondwana.

1993 ◽  
Vol 30 (9) ◽  
pp. 1799-1814 ◽  
Author(s):  
Alicja Kasprzyk

Middle Miocene sulfate sediments south of the Holy Cross Mountains, southern Poland, comprise deep- and shallow-water as well as subaerial facies, accompanied by carbonates and siliciclastics. In the gypsum section, 18 lithostratigraphic units have been distinguished. The facies variety reflects distinct sedimentary conditions in the peripheral area of the evaporitic basin, where the maximum water depth never exceeded some tens of meters. The succession of facies is regressive and comprises six sedimentary cycles that reflect relative changes in sea level and in the physicochemical regime of the basin, both of which were controlled by tectonic and climatic factors. Sea level fell five times during sulfate sedimentation; the last sea-level drop led to the almost total desiccation of the sea in the peripheral part of the basin.


2004 ◽  
Vol 51 ◽  
pp. 47-69
Author(s):  
Tõnis Saadre ◽  
Rein Einasto ◽  
Svend Stouge

The Ordovician succession of the Kovel-1 well in the Volynia region, northwestern Ukraine is composed of a basal 0.6 m thick siliciclastic unit succeeded by 24.7 m Lower and lower Middle Ordovician carbonate sediments. The carbonate rocks are divided into 13 informal lithologic units. The carbonate sediments accumulated in marine shallow water open shelf and shoal or turbulent environs. Biostratigraphically, the succession is referred to seven chitinozoan zones and 12 conodont biozones. Integration, chronostratigraphic position and correlation of the proposed biozones with those from Baltoscandia are briefly discussed. Four major unconformities are recognized within the succession: 1) the Pakerort(?)–Volkhov unconformity, 2) the mid Volkhov unconformity, 3) the early Kunda unconformity and 4) the early Mid Ordovician hiatus. The latter straddles the Oeland–Viru regional Series boundary in the well. The early Mid Ordovician unconformity is prominent and the corresponding hiatus spans the Aseri and Lasnamägi regional stages (= upper Darriwilian). A complex of cyclic transgressive–regressive depositional pattern prevailed and the whole succession is referred to three major depositional cycles. The major depositional cycles are related to global eustatic sea-level cycles in general and hypothetic way to tectonic events caused by collisions of Peri-Gondwanan microcontinents with Baltica.


Geosphere ◽  
2021 ◽  
Author(s):  
James F. Baichtal ◽  
Alia J. Lesnek ◽  
Risa J. Carlson ◽  
Nicholas S. Schmuck ◽  
Jane L. Smith ◽  
...  

We leverage a data set of >720 shell-bearing marine deposits throughout southeastern Alaska (USA) to develop updated relative sea-level curves that span the past ~14,000 yr. This data set includes site location, elevation, description when available, and 436 14C ages, 45 of which are published here for the first time. Our sea-level curves suggest a peripheral forebulge developed west of the retreating Cordilleran Ice Sheet (CIS) margin between ca. 17,000 and 10,800 calibrated yr B.P. By 14,870 ± 630 to 12,820 ± 340 cal. yr B.P., CIS margins had retreated from all of southeastern Alaska’s fjords, channels, and passages. At this time, isolated or stranded ice caps existed on the islands, with alpine or tidewater glaciers in many valleys. Paleoshorelines up to 25 m above sea level mark the maximum elevation of transgression in the southern portion of the study region, which was achieved by 11,000 ± 390 to 10,500 ± 420 cal. yr B.P. The presence of Pacific sardine (Sardinops sagax) and the abundance of charcoal in sediments that date between 11,000 ± 390 and 7630 ± 90 cal. yr B.P. suggest that both ocean and air temperatures in southeastern Alaska were relatively warm in the early Holocene. The sea-level and paleoenvironmental reconstruction presented here can inform future investigations into the glacial, volcanic, and archaeological history of southeastern Alaska.


2009 ◽  
Vol 36 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
Regine Hock ◽  
Mattias de Woul ◽  
Valentina Radić ◽  
Mark Dyurgerov

2007 ◽  
Vol 135 (11) ◽  
pp. 3876-3894 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
David G. Dritschel

Abstract The representation of nonlinear shallow-water flows poses severe challenges for numerical modeling. The use of contour advection with contour surgery for potential vorticity (PV) within the contour-advective semi-Lagrangian (CASL) algorithm makes it possible to handle near-discontinuous distributions of PV with an accuracy beyond what is accessible to conventional algorithms used in numerical weather and climate prediction. The emergence of complex distributions of the materially conserved quantity PV, in the absence of forcing and dissipation, results from large-scale shearing and deformation and is a common feature of high Reynolds number flows in the atmosphere and oceans away from boundary layers. The near-discontinuous PV in CASL sets a limit on the actual numerical accuracy of the Eulerian, grid-based part of CASL. For the spherical shallow-water equations, the limit is studied by comparing the accuracy of CASL algorithms with second-order-centered, fourth-order-compact, and sixth-order-supercompact finite differencing in latitude in conjunction with a spectral treatment in longitude. The comparison is carried out on an unstable midlatitude jet at order one Rossby number and low Froude number that evolves into complex vortical structures with sharp gradients of PV. Quantitative measures of global conservation of energy and angular momentum, and of imbalance as diagnosed using PV inversion by means of Bolin–Charney balance, indicate that fourth-order differencing attains the highest numerical accuracy achievable for such nonlinear, advectively dominated flows.


2016 ◽  
Vol 86 (3) ◽  
pp. 359-372 ◽  
Author(s):  
Pierluigi Pieruccini ◽  
Claudio Di Celma ◽  
Federico Di Rita ◽  
Donatella Magri ◽  
Giorgio Carnevale ◽  
...  

AbstractA 25 m-thick outcrop section exposed at Torre Mucchia, on the sea-cliff north of Ortona, eastern central Italy, comprises a rare Middle Pleistocene succession of shallow-water and paralic sediments along the western Adriatic Sea. An integrated study of the section, including facies and microfacies analyses, and characterization of paleobiological associations (mollusks, fishes, ostracods, foraminifers and pollen), enable a detailed reconstruction of the paleoenvironmental and paleoclimatic conditions during deposition. The shallow-water deposits include a transgressive, deepening- and fining-upward shoreface to offshore-transition facies succession overlain by a regressive shoreface-foreshore sandstone body with an erosive base and a rooted and pedogenically altered horizon at the top that imply deposition during sea-level fall. This forced regressive unit is overlain by paralic strata forming a transgressive succession comprising palustrine carbonates and back-barrier lagoonal mudstones. The palustrine carbonates exhibit some of the typical features encountered in palustrine limestones deposited within seasonal freshwater wetlands (marl prairies). Following the sea-level rising trend, the freshwater marshes were abruptly replaced by a barrier-lagoon system that allowed deposition of the overlying mud-rich unit. Within these deposits, the faunal assemblages are consistent with a low-energy brackish environment characterized by a relatively high degree of confinement. The pollen record documents the development of open forest vegetation dominated by Pinus and accompanied by a number of mesophilous and thermophilous tree taxa, whose composition supports a tentative correlation with Marine Oxygen Isotope Stage 17. The new pollen record from Torre Mucchia improves our understanding of the vegetation development in the Italian Peninsula during the Middle Pleistocene and sheds new light on the role played by the most marked glacial periods in determining the history of tree taxa.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


2014 ◽  
Vol 30 (02) ◽  
pp. 66-78
Author(s):  
Mark Pavkov ◽  
Morabito Morabitob

Experiments were conducted at the U.S. Naval Academy's Hydromechanics Laboratory to determine the effect of finite water depth on the resistance, heave, and trim of two different trimaran models. The models were tested at the same length to water depth ratios over a range of Froude numbers in the displacement speed regime. The models were also towed in deep water for comparison. Additionally, the side hulls were adjusted to two different longitudinal positions to investigate possible differences resulting from position. Near critical speed, a large increase in resistance and sinkage was observed, consistent with observations of conventional displacement hulls. The data from the two models are scaled up to a notional 125-m length to illustrate the effects that would be observed for actual ships similar in size to the U.S. Navy's Independence Class Littoral Combat Ship. Faired plots are developed to allow for rapid estimation of shallow water effect on trimaran resistance and under keel clearance. An example is provided.


Sign in / Sign up

Export Citation Format

Share Document