The Influence of lithosphere and basement properties on the stretching factor and the development of extensional faults across the Otway Basin and eastern Bight Basin

Author(s):  
nasim kharazizadeh

<p>The Influence of lithosphere and basement properties on the stretching factor and the development of extensional faults across the Otway Basin and eastern Bight Basin</p><ol><li><strong> KHARAZIZADEH*, W.P. SCHELLART, J.C. DUARTE </strong></li> </ol><p>School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia</p><p>Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands</p><p>Instituto Dom Luiz (ILD) and Geology Department, Faculty of Sciences of the University of Lisbon, Campo Grande, Lisbon, Portugal  </p><p> </p><p>*[email protected]</p><p>*[email protected]</p><p> </p><p><strong>Abstract</strong></p><p>The large southern continental margin of Australia, with a wide variety of sedimentary basins, formed during Mesozoic rifting. The evolution of sedimentary basins is mainly controlled by plate tectonic activity and the mechanism of continental extension. This work presents a comparative study between two main depocentres of the Bight Basin (Ceduna, Duntroon sub-basins) and the Otway Basin. Here, the total amount of extension (∆L) and stretching factor (β) have been measured across the Otway Basin and eastern Bight Basin. The results show significant variation in extensional stretching along the basins, with the smallest stretching factors in the Ceduna and Duntroon sub-basins (1.2<β<1.4), and the largest amount of extension (~ 177 km) and the largest stretching factor (β=1.85) in the eastern part of the passive margin. The regions with the lowest β factor are underlain mostly by thicker lithosphere, while the regions with the largest β factor and amount of extension are related to younger and thinner lithosphere. The main basement structures have been mapped throughout South Australia and Victoria to examine the possible relationships between the new pattern of extensional faults and old basement fabrics. The distribution pattern of normal faults varies considerably along onshore and offshore components of basins. It is proposed that in some regions fault strike varies due to changes in orientation of pre-existing structures in the basement. For example, the north-south Coorong Shear Zone seems to affect the geometry of normal faults by changing their strike from E-W to NW-SE and also, in the easternmost part of the basin, the Bambra Fault changes the strike of normal faults to the NE-SW. Also, the NE-SW basement structures in the western part of the Gawler Craton have some control on normal faults in the western Ceduna sub-basin. Normal faults in the easternmost and westernmost parts of the Otway Basin have a similar orientation to the basement faults. However, in most regions basement faults are perpendicular to the normal faults and there is a minor influence on the new pattern of faulting. Our results imply that the properties of the continental lithosphere (age, thickness and strength of lithosphere) exert a major influence on the β factor and amount of crustal extension but only a minor influence on the geometry of extensional faults.</p><p><strong>Keywords:</strong> Otway Basin, Ceduna and Duntroon sub-basins, rifting, total amount of extension, β factor, normal faults, lithosphere properties</p><p> </p>

2001 ◽  
Vol 80 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
S. Vandycke ◽  
Y. Quinif

AbstractThis paper presents observations of recent faulting activity in the karstic network of the Rochefort Cave (Namur Province, Belgium, Europe). The principal recent tectonic features are bedding planes reactivated as normal faults, neo-formatted normal faults in calcite flowstone, fresh scaling, extensional features, fallen blocks and displacement of karstic tube. The seismo-tectonic aspect is expanded by the presence of fallen blocks where normally the cavity must be very stable and in equilibrium. Three main N 070° fault planes and a minor one affect, at a decimetre scale, the karst features and morphology. The faults are still active because recent fresh scaling and fallen blocks are observable. The breaking of Holocene soda straw stalactites and displacements of artificial features observed since the beginning of the tourist activity, in the last century, also suggest very recent reactivation of these faults. This recent faulting can be correlated to present-day tectonic activity, already evidenced by earthquakes in the neighbouring area. Therefore, karstic caves are favourable sites for the observation and the quantification of recent tectonic activity because they constitute a 3-D framework, protected from erosion. Fault planes with this recent faulting present slickensides. Thus a quantitative analysis in term of stress inversion, with the help of striated faults, has permitted to reconstruct the stress tensor responsible for the brittle deformation. The principal NW-SE extension (σ3 horizontal) is nearly perpendicular to that of the present regional stress as illustrated by the analysis of the last strong regional earthquake (Roermond, The Netherlands) in 1992. During the Meso-Cenozoic, the main stress tectonics recorded in this part of the European platform is similar to the present one with a NE-SW direction of extension.The discrepancy between the regional stress field and the local stress in the Rochefort cave can be the result of the inversion of the σ2 and σ3 axes of the stress ellipsoid due to its symmetry or of a local modification at the ground surface of the crustal stress field as it has been already observed in active zones.


2021 ◽  
Author(s):  
Bob Holdsworth ◽  
Kit Hardman ◽  
Rich Walker ◽  
Alodie Bubeck ◽  
Cat Greenfield ◽  
...  

<p>Dilatant fissures are a common feature at the Earth’s surface in active rift systems where faults cut mechanically-strong rocks, such as igneous rocks, metamorphic basement or carbonates. Much attention has focused on modern examples of large-aperture fissures in basaltic rocks, where in most cases, only the near-surface-expression is accessible to depths of ~100 m. Numerous mechanisms have been proposed for the formation of such dilatant fractures, including near-surface tensile fracturing along active normal faults at depth, geometric mismatch along faults, and fault-block rotation. However, fissure system architecture and connectivity in the subsurface, and the depth to which dilatant sections can grow are less well understood, as are the ways in which such structures may interact with surface processes.</p><p>In this presentation, we focus on dilatant faults and fractures from the ancient rock record, including examples hosted in rocks below regional erosional unconformities, commonly on the upfaulted flanks of nearby sedimentary basins. Such fissures are typically sub-vertical Mode I fractures that can be kilometres long, tens of metres wide and can extend to depths of 1 km or more below the palaeosurface. They are filled with a remarkably diverse range of high porosity, high permeability fills which act as natural proppants holding fractures open for tens to hundreds of million years. Fills include: wall rock collapse breccias; clastic or carbonate sediment; fossiliferous materials, and a variety of epithermal mineral deposits with characteristically vuggy forms and cockade-like textures. Alteration related to weathering and/or near-surface epithermal mineralization may extend down fissure systems to depths of many hundreds of metres. The subterranean clastic fills are commonly water-lain and preserve a unique record of the stratigraphic or fossil record that may be missing due to erosion at the overlying unconformity. Fissures can form along active normal faults at depth, as later-stage reactivations of pre-existing exhumed fault zones and along regional joint sets associated with folds. Some fissures form along the margins or interior of pre-existing mafic dykes or may act as sites of subsequent dyke emplacement – or both. Sub-unconformity fissure systems and their associated fills are likely to be a major influence on both the fluid storage capacity and flow behaviour in subsurface reservoirs including those hosting hydrocarbons, geothermal resources, and in aquifers worldwide.</p>


β-Lactam antibiotics resistant to β-lactamase degradation can be produced by many chemical modifications, but often at the expense of antibacterial activity. Substitution onto several positions in the molecule produces different and often selective resistance; for instance, heavily sterically hindered acyl groups give staphylococcal P-lactamase resistance to penicillins, and resistance to some enzymes from Gram-negative pathogens to both penicillins and cephalosporins. 6-α- or 7-α-substituents respectively confer a broad spectrum of resistance (e.g. cefoxitin), but changes at positions 2 or 3 have only a minor influence on enzyme susceptibility. Changes in the ring condensed with the β-lactam, such as changing ceph-3-em to ceph-2-em may greatly enhance stability. Small improvements can occur when the nuclear sulphur atom is oxidized, but a much better effect is obtained when it is replaced by another atom such as oxygen, as in clavulanic acid. This compound appears to have broad spectrum resistance which is actually due to susceptibility and subsequent product inhibition.


2011 ◽  
Vol 239-242 ◽  
pp. 1359-1363
Author(s):  
Chao Hui Zhang ◽  
Si Si Liu ◽  
Yue Tao Sun ◽  
Jun Ming Liu

Aqueous solutions have found broad usages as lubricants, in conjunction with other possible utilizations, such as in metal working and other industries. Due to the inferior lubricity, functional additives are needed to improve their tribological performances among which aqueous surfactants are exclusively included. The film forming property of aqueous solution with polyethoxylated ether added (PEOE) is measured, taking consideration of the influences of the temperature and the concentration. The addition of PEOEs into aqueous solutions will largely increase the film forming capacity. But the concentration has only a minor influence on the lubrication property of the aqueous solutions with PEOEs. The cloud point will strongly alter the film forming characteristics.


2000 ◽  
Vol 171 (4) ◽  
pp. 431-440 ◽  
Author(s):  
Lahcen Boutib ◽  
Fetheddine Melki ◽  
Fouad Zargouni

Abstract Structural analysis of late Cretaceous sequences from the northeastern Tunisian Atlas, led to conclude on an active basin floor instability. Regional tectonics resulted in tilted blocks with a subsidence reorganization, since the Campanian time. These structural movements are controlled both by N140 and N100-120 trending faults. The Turonian-Coniacian and Santonian sequences display lateral thickness and facies variation, due to tectonic activity at that time. During Campanian-Maastrichtian, a reorganization of the main subsidence areas occurred, the early Senonian basins, have been sealed and closed and new half graben basins developed on area which constituted previously palaeohigh structures. These syndepositional deformations are characterized by frequent slumps, synsedimentary tilting materials, sealed normal faults and progressive low angle unconformities. These tilted blocks combined to a subsidence axis migration were induced by a NE-SW trending extensional regime. This extension which affects the Tunisian margin during the Upper Cretaceous, is related to the Tethyan and Mesogean rifting phase which resulted from the combined movements of the African and European plates.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 247
Author(s):  
Valeriu V. Cotea ◽  
Mihai Cristian Focea ◽  
Camelia Elena Luchian ◽  
Lucia Cintia Colibaba ◽  
Elena Cristina Scutarașu ◽  
...  

The occurrence of aroma constituents in sparkling wines, with direct impact on their organoleptic characteristics, is affected by several factors, for example the base-wine particularities, grapes cultivar conditions, inoculated yeasts, the aging stage, and wine-making practices. This study evaluated the influence of different four commercial yeasts (IOC FIZZ™, IOC DIVINE™, LEVULIA CRISTAL™, and IOC 18-2007™) on the volatile composition of experimental sparkling wines. For this, five sparkling wines variants from the Muscat Ottonel grape variety were obtained. The base-wine was obtained through reverse osmosis and had a predetermined alcoholic concentration (10.5% vol.). In order to fulfill the proposed purpose, the experimental sparkling wines were characterized by the physical–chemical parameters (according to International Organization of Vine and Wine methods of analysis), volatile fraction (using gas-chromatography coupled with mass spectrometry technique), and sensory descriptors. Data showed a key impact on the concentration of the volatile constituents (p < 0.05), depending on the type of inoculated yeast for the second fermentation. Regarding the sensory analysis, important differences can be observed due to the type of inoculated yeast. Only a minor influence on the physical–chemical parameters was registered.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


2018 ◽  
Author(s):  
Dimitrios - Georgios Kontopoulos ◽  
Erik van Sebille ◽  
Michael Lange ◽  
Gabriel Yvon-Durocher ◽  
Timothy G. Barraclough ◽  
...  

AbstractTo better predict how populations and communities respond to climatic temperature variation, it is necessary to understand how the shape of the response of fitness-related traits to temperature evolves (the thermal performance curve). Currently, there is disagreement about the extent to which the evolution of thermal performance curves is constrained. One school of thought has argued for the prevalence of thermodynamic constraints through enzyme kinetics, whereas another argues that adaptation can—at least partly—overcome such constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis of the thermal performance curves of growth rate of phytoplankton—a globally important functional group—, controlling for environmental effects (habitat type and thermal regime). We find that thermodynamic constraints have a minor influence on the shape of the curve. In particular, we detect a very weak increase of maximum performance with the temperature at which the curve peaks, suggesting a weak “hotter-is-better” constraint. Also, instead of a constant thermal sensitivity of growth across species, as might be expected from strong constraints, we find that all aspects of the thermal performance curve evolve along the phylogeny. Our results suggest that phytoplankton thermal performance curves adapt to thermal environments largely in the absence of hard thermodynamic constraints.


2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson

Abstract. Dyke swarms are common on Earth and other planetary bodies, comprising arrays of dykes that can extend for 10's to 1000's of kilometres. The vast extent of such dyke swarms, and their rapid emplacement, means they can significantly influence a variety of planetary processes, including continental break-up, crustal extension, resource accumulation, and volcanism. Determining the mechanisms driving dyke swarm emplacement is thus critical to a range of Earth Science disciplines. However, unravelling dyke swarm emplacement mechanics relies on constraining their 3D structure, which is extremely difficult given we typically cannot access their subsurface geometry at a sufficiently high enough resolution. Here we use high-quality seismic reflection data to identify and examine the 3D geometry of the newly discovered Exmouth Dyke Swarm, and associated structures (i.e. dyke-induced normal faults and pit craters), in unprecedented detail. The latest Jurassic dyke swarm is located on the Gascoyne Margin offshore NW Australia and contains numerous dykes that are > 170 km long, potentially > 500 km long. The mapped dykes are distributed radially across a 39° arc centred on the Cuvier Margin; we infer this focal area marks the source of the dyke swarm, which was likely a mantle plume. We demonstrate seismic reflection data provides unique opportunities to map and quantify dyke swarms in 3D in sedimentary basins, which can allow us to: (i) recognise dyke swarms across continental margins worldwide and incorporate them into models of basin evolution and fluid flow; (ii) test previous models and hypotheses concerning the 3D structure of dyke swarms; (iii) reveal how dyke-induced normal faults and pit craters relate to dyking; and (iv) unravel how dyking translates into surface deformation.


Sign in / Sign up

Export Citation Format

Share Document