Crop water requirements of cotton

1958 ◽  
Vol 51 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Joseph Hutchinson ◽  
H. L. Manning ◽  
H. G. Farbrother

1. Attention is drawn to the enormous variations in yield experienced in commercial cotton growing under rain-fed conditions. Yields at Namulonge have ranged from 161 to 1163 lb./acre.2. In seeking an explanation of this enormous variation past and present fertilizer trials in Uganda have failed to show that much of this variation is due to nutrient status.3. From Manning's previous analysis of yields in relation to seasonal rainfall, over many district trials, it is evident that 20–25 in. of rainfall per season is optimum.4. The purpose of more recent studies has been to examine the effect of distribution of rainfall within the season. Clearly the pattern of crop water requirement, also within the season, must supersede a simple seasonal concept of crop water use.5. Experimental evidence, based on several seasons' data, led to the conclusion that evapotranspiration rates exceeding the commonly accepted figure of 0·8E must in fact occur in order to provide a satisfactory explanation of results recorded.6. The within-season pattern of water requirement of an annual arable crop is shown to be more dependent on its state of development than on the pattern of a physical model based on calculations of energy availability.

2013 ◽  
Vol 340 ◽  
pp. 961-965
Author(s):  
Xin Hua Wang ◽  
Mei Hua Guo ◽  
Hui Mei Liu

According to Kunming 1980-2010 monthly weather data and CROPWAT software and the corresponding crop data, crop water requirements and irrigation water use are calculated. By frequency analysis, irrigation water requirement was get for different guaranteed rate. The results show that: corn, potatoes, tobacco, and soybeans average crop water requirements were 390.7mm, 447.9mm, 361.8mm and 328.4mm, crop water dispersion coefficient is small, period effective rainfall during crop growth in most of the year can meet the crop water requirements, so irrigation water demand is small. While the multi-year average crop water requirements were 400.8mm, 353.5mm, 394.3mm for small spring crops of wheat, beans, rape. Because the effective rainfall for these crops during growth period is relative less, crop irrigation water requirements for small spring crop is much. Vegetables and flowers are plant around the year, so the crop water and irrigation water requirements are the largest.


Author(s):  
Lisma Safitri

The accurate water use information at each stage of plant growth is important to better understand the efficient and precise crop water requirement for optimal plant productivity. Nurseries of palm oil are a phase where young palm oil requires extra maintenance, particularly in meeting the plant water needs. The palm oil in the nursery phase require the regular irrigation schedule due to the vulnerable root systems. The purpose of this study was to calculate the oil palm water requirement with Cropwat 8.0 toward the precise irrigation management and provide a scenario for irrigation scheduling in palm oil nursery. The study was conducted in palm oil main nurseries at KP2 Instiper Yogyakarta with site-specific climate data and soil properties. The method used is analyzing climate data and soil properties and simulating crop water requirements, actual water use and irrigation scheduling with Cropwat 8.0. Based on the results, the average of crop water requirement (ETP) of palm oil in main nursery is 3.4 mm / day. Based on the water deficit scenario from rainfall and crop water requirements, irrigation is scheduling in April for 1.4 mm, May for 18.3 mm, June for  3.5 mm, July for 44.1 mm and August for 42.8 mm. On a daily scale and taking into account the availability of soil moisture and the water retention of plant roots, the net irrigation scheduling is given at an average of 2.2 mm / day and gross irrigation of 6 mm / day which is given daily depending on rainfall and plant age.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 91 ◽  
Author(s):  
Hao Jia ◽  
Ting Zhang ◽  
Xiaogang Yin ◽  
Mengfei Shang ◽  
Fu Chen ◽  
...  

Crop water requirements are directly affected by climatic variability, especially for crops grown in the areas which are sensitive to climatic change. Based on the SIMETAW model and a long-term meteorological dataset, we evaluated the spatiotemporal variations of climatic change impacts on water requirement of oat in North and Northeast China. The results indicated that effective rainfall showed an increasing trend, while the crop water requirement and irrigation demand presented decreasing trends over the past decades. The water requirement of oat showed significant longitudinal and latitudinal spatial variations, with a downtrend from north to south and uptrend from east to west. Climatic factors have obviously changed in the growth season of oat, with upward trends in the average temperature and precipitation, and downward trends in the average wind speed, sunshine hours, relative humidity, and solar radiation. Declines in solar radiation and wind speed, accompanied with the increase in effective rainfall, have contributed to the reduced crop water requirement over these decades. Given the complex dynamic of climate change, when studying the impact of climate change on crop water requirements, we should not only consider single factors such as temperature or rainfall, we need to analyze the comprehensive effects of various climatic factors.


Author(s):  
Javad Gilanipour ◽  
Bahram Gholizadeh

In this paper, Rice water requirement and irrigation water requirement in Amol agro meteorological Station in 2016-2045 are forecasted based on the projected meteorological data of Hadcm3 under A2 scenario. Rice water requirements are estimated by using crop coefficient approach. Reference evapotranspiration are calculated by FAO Penman-Monteith method. Moreover, the irrigation water requirements are simulated by calibrated CROPWAT model using the meteorological parameters. The results show that both crop water requirement and irrigation water requirement present downward trend in the future. In 2016-2045, the rice water requirement and irrigation water requirement decrease by more than 9.9% under A2 scenario, respectively. Furthermore, the precipitation rise may be the main reason for the decrease in crop water requirement, while significant decrease of irrigation water requirement should be attributed to combined action of rising precipitation and a slight increase in temperature.


2020 ◽  
Author(s):  
maria calera picazo ◽  
Carmen Plaza ◽  
andres cuesta ◽  
vicente bodas ◽  
ramon molina ◽  
...  

<p>In Mediterranean areas, where water scarcity is the main limiting factor, applying good practices in the use of water for irrigation is crucial in order to maximize benefits for farmers and protect the resource. Furthermore, energy costs derived from water pumping from groundwater is one of the most important expenses for farmers in our study area, the South-East of Spain. Variable Rate Irrigation is a promising technique to apply the required water, but VRI faces the challenge to know accurately the crop water requirement distribution in space and time.</p><p>The objective of this work is twofold: Firstly, to demonstrate through a practical case the optimization of the irrigation water in an operativity level managing the variability of the plot using time series of free satellite images currently in orbit. Secondly, to put into practice the technology (SicoP system) developed by ACOEMAN that allows the pivot to apply variable rate at medium cost for farmers.</p><p>The case study was carried out in a commercial wheat plot of 60ha, irrigated by a central pivot endowed with the SicoP technology, during the campaign of 2018-2019.  The SicoP pivot technology allows to implement a variable angular speed for each sector. The pivot circle was divided into 36 sectors of 10 degrees each. Every Thursday during the growing cycle the crop water requirements were estimated per sector by means of remote sensing and meteorological data by the decision support system developed by AgriSat Iberia as consultant company. Thus, the system applied the irrigation water requirement per sector, calculated through a simplified soil water balance.</p><p>The estimation of the actual crop water requirements spatially distributed at 30x30 meter (3x3 pixel) resolution has been based on NDVI-Kc forecasting methodology. The high temporal and spatial resolution provided by free images from satellites Sentinel 2A and Sentinel 2B combined with Landsat 8 images allows the implementation of a remote sensing-based operational approach for this variable rate decision support system.</p><p>This paper includes a comparative analysis of the differences between the water volume applied by homogeneous rate, 1 per plot and week, and the variable rate irrigation, 36 rates per plot and week, using the same EO-based methodology. A yield map was obtained by using a yield-monitoring device implemented into the combine harvester.</p><p>First promising results regarding the optimization of the use of water have been demonstrated going from 1 irrigation decision in 60ha per week, to 36 irrigation decision per week, one per 1.6ha sector. Modest savings in water volumes at the end of the growing cycle have been observed. This map shows no additional increase of yield spatial variability due to the use of VIR.  Some problems were encountered when the climate conditions were not appropriate for irrigation, mainly high wind speed. The system has reached a high operativity level ready for adoption by farmers. </p>


2020 ◽  
Author(s):  
Matteo Rolle ◽  
Stefania Tamea ◽  
Pierluigi Claps

<p>Estimation of crop water needs is essential to understand the role of agriculture in the water balance modeling at various scales. In turn, this is relevant for water management purposes and for the fulfilling of water-related environmental regulations. In this study, a comprehensive assessment of crop water requirement at large scale is presented, both in terms of rainfall (green water) and irrigation (blue water).</p><p>A water-balance model is built to provide estimates of actual evapotranspiration and accompanying soil moisture by using high space-time resolution data. The new ERA5 reanalysis dataset, published by the ECMWF within the Copernicus monitoring system and obtained from satellite data and ground measurements, provides the precipitation and temperature input variables to the model. Data available at the hourly time scale are all aggregated on a daily scale and used in the water balance model over  a grid of cultivated areas from the MIRCA2000 dataset. Cultivated areas are available for 26 crops for year 2000 at a spatial resolution of 5 arcmin (about 9 km at the Equator). Data from MIRCA2000 are separated between rainfed areas and areas equipped for irrigation and are characterized by specific monthly calendars of the crop growing seasons.</p><p>The model performs the daily soil water balance throughout the whole year, considering all crops at their growth stage and assuming as initial condition at each crop sowing date a monthly average soil moisture. Results quantify the volumes of green and blue water necessary for crop growth and describe the spatial variability of the water requirements of each individual crop. The high spatial and temporal resolution of Copernicus ERA5 data enables a great improvement in the characterization of hydro-climatic forcings with respect to previous assessments and a greater accuracy in the crop water requirement estimates.</p><p>Finally, the knowledge of water requirements is an important step to quantify the irrigation volumes used in agriculture, on which there is a high uncertainty and little spatially distributed information. The model proposed enables the investigation of spatio-temporal variability associated to varying meteorological forcings and of the effects of different irrigation techniques, enabling an improved management of water resources.</p>


2020 ◽  
Author(s):  
A. Narmilan ◽  
M. Sugirtharan

Agriculture sector is one of the main sources of income in the North eastern and some of the North western parts of Sri Lanka. Over the past decade, many countries around the world have witnessed a growing scarcity and competition for water among different users. Since Agriculture is the major user of water, improving agricultural water management is essential to any irrigation management approach specially to apply the exact amount of water to the field in order to meet crop water requirement. This study aims to estimate water requirement of rice by using the model CROPWAT. According to the study, effective rainfall was found to be 601mm and 133 mm in Maha and Yala season respectively. Total crop water requirements are 349 mm and 436 mm in Maha and Yala season respectively. Irrigation scheduling carried out by CROPWAT revealed that, the gross irrigation requirement is 473 mm and net irrigation requirement is 331 mm. Net scheme irrigation requirements are 40, 106, 100 and 22 mm per month in May, June, July and August respectively. Further, flow of net scheme irrigation requirements is found to be 0.15, 0.41, 0.37 and 0.08 l/s/ha in May, June, July and August respectively. Therefore, the model for planning of irrigation water requirements of rice is very important for efficient utilization of water and to meet the possible change of climate in agricultural sector.


2021 ◽  
Vol 255 ◽  
pp. 107005
Author(s):  
Sara Masia ◽  
Antonio Trabucco ◽  
Donatella Spano ◽  
Richard L. Snyder ◽  
Janez Sušnik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document