Effects of nitrogen fertilizer and tridemorph on mildew, growth and yield of spring barley 1975–7

1983 ◽  
Vol 101 (3) ◽  
pp. 517-546 ◽  
Author(s):  
J. F. Jenkyn ◽  
M. E. Finney ◽  
G. V. Dyke

SUMMARYExperiments with spring barley in 1975–7 tested fungicides applied to control powdery mildew (tridemorph) or brown rust (benodanil) in factorial combination with six amounts of fertilizer N, applied either to the seed bed soon after sowing, as a later top dressing or half at each time.Powdery mildew was the principal leaf disease in all three years. It tended to be increased by increments of N and by applying the N late but much less consistently in the first two years, when soils were very dry for much of the growing period, than in 1977 when amounts of rain were much closer to the long-term mean. Tridemorph significantly increased the number of ears in 1975, mean number of grains per ear in 1976 and 1000-grain weight in all three years; it gave net increases in grain yield of 0·55, 0·68 and 0·41 t/ha, respectively, in 1975–7. Yield response to increasing amounts of applied N was greatly increased where mildew had been controlled by the use of tridemorph, and was better where the N had been divided into two dressings than where it had been applied as a single dose. In 1975 and 1977 the biggest responses to tridemorph were obtained with late N but in 1976 yield was increased most by tridemorph where the N had been applied to the seed bed.Analyses of samples taken in 1977 showed no significant effect of tridemorph sprays on concentrations of either N, P or K in the green crop. By contrast, analyses of grain samples in 1976 and 1977 showed that amounts of N in grain (mg N/grain) were affected by amounts of applied N and by tridemorph, and that there were interactions between these two factors. Concentrations of N in the grain (% D.M.) were also determined by the effects which these factors had on grain size. At small N rates tridemorph mostly increased grain size so that N concentrations were decreased by the fungicide. At large N rates increases in grain size where tridemorph had been applied were accompanied by increases in the N content of the grain (mg N/grain) so that N concentrations were either unaffected (1976) or were increased (1977) by the fungicide. With 90 kg/ha of applied N the fungicide increased the amount of N/ha removed in grain by over 21 % in each year. The apparent recoveries of N in these plots were increased from 66 to 81 % and from 87 to 105%, respectively, in the two years. Tridemorph had no significant effect on concentrations of P or K in the harvested grain but increased average amounts of these nutrients removed in the grain by 17 and 14%, respectively, in 1976 and by 14 and 7% respectively, in 1977.Examination of black and white, infra-red aerial photographs of the experiments showed that, in each year, the brightness of individual plot images was significantly correlated with grain yield.Complex designs without division into blocks are especially vulnerable to positional variation. Alternative methods of adjusting for such positional variation were compared in analyses of grain yields. The potential improvements in precision which might be achieved by the appropriate use of such analyses, and the difficulties of ensuring that unacceptable subjectivity and bias are not thereby introduced into the analyses, are discussed.

1997 ◽  
Vol 37 (2) ◽  
pp. 199 ◽  
Author(s):  
G. Fathi ◽  
G. K. McDonald ◽  
R. C. M. Lance

Summary. Genotypic differences in responses to nitrogen (N) fertiliser of 6 cultivars of barley (Clipper, Stirling, Weeah, Schooner, Chebec, Skiff) grown at 8 different rates of N were examined in 2 seasons. Measurements of vegetative growth, N content, grain yield, grain protein concentration (GPC) and yield components were taken to identify traits that may contribute to high yield responsiveness. The optimum rates of N for dry matter production at ear emergence (DMee) were greater than 80 kg N/ha for all cultivars and often growth increased up to 105 kg N/ha. Optimum rates of N for grain yield (Nopt) were lower and ranged, on average, from 50 kg N/ha for Clipper to 96 kg N/ha for Chebec. The initial response to N varied from 13–14 kg/kg N in Chebec, Weeah and Schooner, to 36 kg/kg N in Skiff. The Nopt for the semi-dwarf cultivar Skiff was 71 kg N/ha and it tended to show the greatest yield response to N. It produced 19 kernels/g DMee, compared with 15–17 kernels/g DMee in the other cultivars. Unlike most other cultivars, Skiff’s yield was consistently and positively correlated with ears/m2; Stirling was the only other cultivar to show a similar relationship. However, the average kernel weight of Skiff was up to 5 mg lower than that of Clipper, Weeah and Schooner, and varied more than these cultivars between sites, suggesting that consistent grain size may be a problem in this cultivar. By comparison, Clipper and Schooner had lower Nopt (51 kg/ha) and a less variable kernel weight. There were no signs of differences in GPC of the 6 cultivars used here at 3 N-responsive sites. Adding N increased GPC up to the highest rate of N and the responses were generally linear, but GPC at Nopt exceeded the upper limit for malting quality of 11.8% in all cultivars. Average N rates of between 38 kg N/ha (Schooner) and 58 kg N/ha (Skiff) were sufficient to raise GPC above 11.8%. The experiments showed that the N rates for optimum yields varied considerably among cultivars, but applyi1ng rates to achieve maximum yields may cause GPC to exceed the maximum value for malting barley. The use of semi-dwarf cultivars, such as Skiff, which are very responsive to N, can provide some leeway in the choice of N, but there may be a trade-off in quality associated with reduced grain size.


2021 ◽  
Vol 23 (2) ◽  
pp. 35-43
Author(s):  
MM Islam ◽  
AA Mamun ◽  
SK Ghosh ◽  
D Mondal

Nitrogen is one of the main inputs of oat cultivation and its efficient management is a basic for harvesting the maximum potentiality of the crop. An investigation was conducted at field laboratory of Agrotechnology Discipline, Khulna University, Bangladesh to find out the effect of nitrogen fertilizer on growth, yield and yield contributing characters of oat during 2017-2018. The experiment was designed in randomized complete block with seven N rates (0, 30, 45, 60, 75, 90 and 105 kg ha-1) in triplicate run. Application of N nitrogen significantly increased the growth and yield of oat. The results showed that 105 kg ha-1 N was supreme in all growth parameters and straw yield but 90 kg ha-1 N was better for main yield parameters and grain yield. The maximum plant height (101.27 cm), leaf number (11.90), tillers plant-1 (9.93), plant density (41.33 m-2) and straw yield (4.70 tha-1) were recorded with  105 kg ha-1 N application, whereas the highest grain yield (1.76 t ha-1) was found with 90 kg ha-1 N. From the results of the present research, it may be concluded that application of 90 kg N ha-1 could be used for oat production in soils of AEZ 13, Bangladesh. Bangladesh Agron. J. 2020, 23(2): 35-43


2003 ◽  
Vol 54 (10) ◽  
pp. 957 ◽  
Author(s):  
A. G. Condon ◽  
F. Giunta

Transient waterlogging during winter and spring reduces wheat yield in many parts of southern Australia. Yield reductions from waterlogging are associated with reduced production and survival of tillers, fewer and smaller fertile tillers, and smaller grain size. Under favourable conditions, wheats that have the tiller-inhibition ('tin') gene produce a lower total number of tillers but a higher proportion of large, productive tillers and larger grains than wheats without this gene. These characteristics of restricted-tillering wheat may contribute to improved yield under transient waterlogging. We compared the growth and yield of the commercial variety Bodallin and 2 Bodallin backcross derivatives containing the 'tin' gene in 8 field trials grown on shallow, duplex soils in 1995 and 1996 at 3 locations in the south-west of Western Australia. Trials were sown at standard (1995) and standard and high (1996) seeding rates. Trial-mean yield ranged from 0.5 to 4.7 t/ha, depending on the occurrence and severity of waterlogging before anthesis and of soil water deficit before and after anthesis. Grain yield of the restricted-tillering (RT) lines averaged only c. 80% of Bodallin. At all sites and seeding rates the RT lines had fewer spikes per m2 (45% fewer, on average) but averaged 44% more grains per spike. In 1996 only, grain weight of the RT lines was 6% greater than of Bodallin. There was no evidence that the relative yield of the RT lines was greater at waterlogged sites than at other sites. Waterlogging reduced the number of fertile spikes of RT lines and of Bodallin to the same relative extent and differences in grains per spike and grain size had little effect on relative yields. Even though harvest index of the RT lines was slightly elevated in some environments, biomass production of the RT lines was low in all environments. We conclude that wheats with the 'tin' gene are unlikely to have a yield advantage under transient waterlogging unless their biomass production can match that of more freely tillering wheats.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.


1971 ◽  
Vol 11 (51) ◽  
pp. 450 ◽  
Author(s):  
JE Schultz

The effect of CCC on the growth of wheat in South Australia was assessed in three years, 1967 to 1969. A significant grain yield response was obtained only in the wet year, 1968, and was attributed to increased grain weight. It is suggested that the delay in heading and leaf senescence which occurred in CCC-treated plants allowed a greater assimilation of water and nutrients, thus producing the heavier grains. The lack of response in grain yield in 1967 and 1969 was probably due to moisture stress during gram filling. CCC reduced crop height significantly in 1968 and 1969, but not in the very dry year, 1967. There was evidence that split applications would be more useful than the single applications used in these experiments. Although CCC can give small increases in yield under some conditions, it is unlikely to be of commercial importance for wheat-growing in South Australia.


2012 ◽  
Vol 49 (1) ◽  
pp. 3-18 ◽  
Author(s):  
E. RUTTO ◽  
J. P. VOSSENKEMPER ◽  
J. KELLY ◽  
B. K. CHIM ◽  
W. R. RAUN

SUMMARYCorrect placement of side dress nitrogen (N) fertilizer could increase nitrogen use efficiency (NUE) and maize yield production. Field studies were established to evaluate application of midseason (V8 to V10), variable liquid urea ammonia nitrate (28%), N rates (0, 45, 90 and 134 kg N ha−1) and different application distances (0, 10, 20 and 30 cm) away from the maize row on grain yield and NUE at Haskell and Hennessey in 2009, Efaw in 2010 and Lake Carl Blackwell, Oklahoma in 2009 and 2010. A randomized complete block design with three replications was used throughout the study. Results indicated that maize grain yield in sites with adequate rainfall increased significantly (p < 0.05) with N rate, and poor N response was recorded in sites with low rainfall. Across sites and seasons, varying side dress N application distance away from the maize row did not significantly (p < 0.05) influence maize grain yield and NUE even with no prep-plant applied. Environments with adequate rainfall distribution had better maize grain yields when high side dress N rates (90 and 134 kg N ha−1) were applied 0 to 10 cm, and a higher NUE when 45 kg N ha−1 was applied 0 to 20 cm away from the maize row. For low N rates (45 kg N ha−1), increased maize grain yield and NUE were achieved when side dress N was applied 0 to 20 cm away from the maize row at locations with low rainfall distribution. Across sites and seasons, increasing side dress N to 134 kg N ha−1 contributed to a general decline in mean NUE to as low as 4%, 35%, 10%, 51% at Hennessey, Efaw, LCB (2009) and LCB (2010) respectively.


2002 ◽  
Vol 53 (10) ◽  
pp. 1137 ◽  
Author(s):  
T. L. Botwright ◽  
A. G. Condon ◽  
G. J. Rebetzke ◽  
R. A. Richards

Improved early vigour in wheat (Triticum aestivum L.) has been proposed as an important trait for increasing grain yield through greater water-use efficiency in rainfed, Mediterranean-type environments. Three years of field trials were undertaken in Western Australia at 2 sites, Merredin (low rainfall, 244 mm in the growing season) and Wongan Hills (medium rainfall, 308 mm), to examine the influence of increased early vigour on crop growth and yield. The effect of breeding for greater early vigour was tested in 1998 and 1999 using 3 high vigour and 3 low vigour BC2:F5 lines of the cultivar Amery backcrossed to a 'high vigour' donor. Averaged across environments, the high vigour backcross lines had a 10% increase in early vigour (i.e. leaf area/plant) at 50 DAS compared with the low vigour lines. Differences in yield across environments were associated with variation in total rainfall, rainfall distribution, and soil properties. In the wetter of the 2 years (1999), greater early vigour translated to increased yield of c. 12%, averaged across environments, but there was no difference in yield in either environment in the drier year (1998). Potential deleterious effects of the recurrent parent on yield were eliminated in field trials in 1999 and 2000 by manipulating early vigour through varying grain size (25, 35, or 50 mg) or seeding density (50, 200, or 400 plants/m2) of Amery at sowing. Large grain increased the embryo size and early vigour at 50 DAS in both environments in 1999. This translated to greater biomass production at anthesis and maturity to increase grain yield at Wongan Hills in 1999. In contrast, there was no relationship between grain size, biomass production, and yield at Merredin in 1999 or at either site in 2000. Sowing density treatments also had no effect on yield in 2000. In conclusion, there is potential to increase yield of wheat by selecting for greater early vigour in a wheat breeding program. The expression of vigour in field conditions and the translation of this improvement to higher yields is, however, dependent on the environment. Current yield limitations arising through backcrossing with a high vigour, yet poor yielding donor, need to be addressed.


1989 ◽  
Vol 112 (2) ◽  
pp. 265-276 ◽  
Author(s):  
D. R. Hodgson ◽  
G. M. Whiteley ◽  
Anna E. Bradnam

SummaryExperiments were carried out in 1985 and 1986 on a sandy clay–loam to investigate the effects of above average rainfall in May and early June on the growth of the spring barley cv. Klaxon in three systems of cultivation. The cultivation treatments, ploughing (P), shallow-tine cultivation (S) and direct drilling (D), had been repeated on the same plots and cropped with spring barley each year since 1971.A total of 112 mm water was applied to the waterlogged subplots in 1985 and 168 mm in 1986.Compared with plots receiving the normal seasonal rainfall, extra water had no effect on shoot or grain yield in 1985 (mean grain yield 6·38 t/ha) and there were no significant differences between cultivation systems. In 1986, in contrast, water, in excess of normal rainfall, depressed both shoot growth and grain yield (mean grain yields 4·49 and 4·07 t/ha for the normal rainfall and the additional water treatments, respectively), the effect being greater on P than on either S or D.In both years, saturation was achieved in the topsoil for a prolonged period during May and early June in the waterlogged subplots. In 1985 this was associated with a period of low oxygen flux and low redox potential, but this did nothave a significant effect on root or shoot growth. In 1986 there was no comparable period of reduced aeration, nor any significant differences in oxygen flux or redox potentials between water and cultivation treatments. In 1986, reduced growth and yield were directly associated with a mean reduction in N recovery by shoots of 36 kg N/ha, the effect being greatest on the ploughed plots where water was added. The results do not support the hypothesis that waterlogging per seaffects the growth of barley more on ploughed than on direct-drilled land.


Sign in / Sign up

Export Citation Format

Share Document